1
|
Rahmanian E, Tanideh N, Karbalay-Doust S, Mehrabani D, Rezazadeh D, Ketabchi D, EskandariRoozbahani N, Hamidizadeh N, Rahmanian F, Namazi MR. The effect of topical magnesium on healing of pre-clinical burn wounds. Burns 2024; 50:630-640. [PMID: 37980271 DOI: 10.1016/j.burns.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Magnesium (Mg) is an essential factor in the healing process. This study aimed to evaluate the effect of Mg creams on healing burn wounds in the rat model. METHODS To induce burns under general anaesthesia, a 2 × 2 cm2, 100 °C plate was placed for 12 s between the scapulas in 100 male adult Sprague Dawley rats. Animals were divided into five groups (n = 20); positive control (induced burn without treatment); vehicle control (received daily Eucerin cream base topically); comparative control (induced burn and treated daily with Alpha burn cream topically); Treatment 1 and 2 (received daily Mg cream 2% and 4% topically, respectively). All animals were bled for hematological assessment of malondialdehyde (MDA) and TNF-α and sacrificed on days 0, 1, 7, 14, and 21 after interventions for biomechanical, histological, and stereological studies. RESULTS Stereologically speaking, in treatment groups an increase in dermal collagen volume and fibroblasts was noticed. In treatment groups, the length of vessels, angiogenesis, and skin stretch increased, but the wound area, MDA, and TNF-α level decreased. CONCLUSION Mg cream was effective in healing burns.
Collapse
Affiliation(s)
- Elham Rahmanian
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, And Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem cells technology research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology research Center, Shiraz University of Medical Sciences, Shiraz, iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz, Iran. and Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Deniz Ketabchi
- Haj Daei Clinic, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Hamidizadeh
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Rahmanian
- Paramedic of Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Reza Namazi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Jenssen AB, Mohamed-Ahmed S, Kankuri E, Brekke RL, Guttormsen AB, Gjertsen BT, Mustafa K, Almeland SK. Administration Methods of Mesenchymal Stem Cells in the Treatment of Burn Wounds. EUROPEAN BURN JOURNAL 2022; 3:493-516. [PMID: 39600017 PMCID: PMC11571831 DOI: 10.3390/ebj3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2024]
Abstract
Cellular therapies for burn wound healing, including the administration of mesenchymal stem or stromal cells (MSCs), have shown promising results. This review aims to provide an overview of the current administration methods in preclinical and clinical studies of bone-marrow-, adipose-tissue-, and umbilical-cord-derived MSCs for treating burn wounds. Relevant studies were identified through a literature search in PubMed and Embase and subjected to inclusion and exclusion criteria for eligibility. Additional relevant studies were identified through a manual search of reference lists. A total of sixty-nine studies were included in this review. Of the included studies, only five had clinical data from patients, one was a prospective case-control, three were case reports, and one was a case series. Administration methods used were local injection (41% in preclinical and 40% in clinical studies), cell-seeded scaffolds (35% and 20%), topical application (17% and 60%), and systemic injection (1% and 0%). There was great heterogeneity between the studies regarding experimental models, administration methods, and cell dosages. Local injection was the most common administration method in animal studies, while topical application was used in most clinical reports. The best delivery method of MSCs in burn wounds is yet to be identified. Although the potential of MSC treatment for burn wounds is promising, future research should focus on examining the effect and scalability of such therapy in clinical trials.
Collapse
Affiliation(s)
- Astrid Bjørke Jenssen
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ragnvald Ljones Brekke
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Anne Berit Guttormsen
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Anesthesia and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Stian Kreken Almeland
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
3
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
4
|
Jiang Z, Wang Y, Li L, Hu H, Wang S, Zou M, Liu W, Han B. Preparation, Characterization, and Biological Evaluation of Transparent Thin Carboxymethyl-Chitosan/Oxidized Carboxymethyl Cellulose Films as New Wound Dressings. Macromol Biosci 2021; 22:e2100308. [PMID: 34752675 DOI: 10.1002/mabi.202100308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Indexed: 01/05/2023]
Abstract
Full thickness burns in which the damage penetrates deep into the skin layers and reaches underneath the muscle, compel the need for more effective cure. Herein, cross-linked carboxymethyl-chitosan (CM-chitosan) films, prepared by Schiff base association with oxidized carboxymethyl cellulose (OCMC), are investigated regarding the wound healing capacity on full thickness burn injuries in vivo. Transparent thin CM-chitosan/OCMC films are obtained with tensile strength reaching 6.11 MPa, elongation at break above 27%, and water absorption more than 800%, which operates in favor of absorbing excess exudate and monitoring the wound status. Furthermore, the nonadherent CM-chitosan/OCMC films, with satisfactory biodegradability, cell, and tissue compatibility, are readily used to the wound sites and easily removed following therapy on scalded tissue so as to alleviate the suffering from burn. The films efficiently promote epithelial and dermal regeneration compared to the control, achieving 75.9% and 94.4% wound closure, respectively, after 14 and 27 days. More importantly, CM-chitosan/OCMC films accelerate wound healing with natural mechanisms which include controlling inflammatory response, reducing apoptosis, promoting fibroblast cell proliferation, and collagen formation. In conclusion, the CM-chitosan/OCMC films elevate the repair ratio of burn injuries and have great potential for facilitating the healing process on full-thickness exuding wounds.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lulu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Huiwen Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Mingyu Zou
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
5
|
Fabrication of multifunctional chitosan-Guar-Aloe Vera gel to promote wound healing. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01958-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|