1
|
Chan AY, Choi EH, Yuki I, Suzuki S, Golshani K, Chen JW, Hsu FP. Cerebral vasospasm after subarachnoid hemorrhage: Developing treatments. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
2
|
Daou BJ, Koduri S, Thompson BG, Chaudhary N, Pandey AS. Clinical and experimental aspects of aneurysmal subarachnoid hemorrhage. CNS Neurosci Ther 2019; 25:1096-1112. [PMID: 31583833 PMCID: PMC6776745 DOI: 10.1111/cns.13222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/30/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) continues to be associated with significant morbidity and mortality despite advances in care and aneurysm treatment strategies. Cerebral vasospasm continues to be a major source of clinical worsening in patients. We intended to review the clinical and experimental aspects of aSAH and identify strategies that are being evaluated for the treatment of vasospasm. A literature review on aSAH and cerebral vasospasm was performed. Available treatments for aSAH continue to expand as research continues to identify new therapeutic targets. Oral nimodipine is the primary medication used in practice given its neuroprotective properties. Transluminal balloon angioplasty is widely utilized in patients with symptomatic vasospasm and ischemia. Prophylactic "triple-H" therapy, clazosentan, and intraarterial papaverine have fallen out of practice. Trials have not shown strong evidence supporting magnesium or statins. Other calcium channel blockers, milrinone, tirilazad, fasudil, cilostazol, albumin, eicosapentaenoic acid, erythropoietin, corticosteroids, minocycline, deferoxamine, intrathecal thrombolytics, need to be further investigated. Many of the current experimental drugs may have significant roles in the treatment algorithm, and further clinical trials are needed. There is growing evidence supporting that early brain injury in aSAH may lead to significant morbidity and mortality, and this needs to be explored further.
Collapse
Affiliation(s)
- Badih J. Daou
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Sravanthi Koduri
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | | | - Neeraj Chaudhary
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Aditya S. Pandey
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
3
|
Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6218239. [PMID: 31191800 PMCID: PMC6525854 DOI: 10.1155/2019/6218239] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms underlying poor outcome following subarachnoid haemorrhage (SAH) are complex and multifactorial. They include early brain injury, spreading depolarisation, inflammation, oxidative stress, macroscopic cerebral vasospasm, and microcirculatory disturbances. Nrf2 is a global promoter of the antioxidant and anti-inflammatory response and has potential protective effects against all of these mechanisms. It has been shown to be upregulated after SAH, and Nrf2 knockout animals have poorer functional and behavioural outcomes after SAH. There are many agents known to activate the Nrf2 pathway. Of these, the actions of sulforaphane, curcumin, astaxanthin, lycopene, tert-butylhydroquinone, dimethyl fumarate, melatonin, and erythropoietin have been studied in SAH models. This review details the different mechanisms of injury after SAH including the contribution of haemoglobin (Hb) and its breakdown products. It then summarises the evidence that the Nrf2 pathway is active and protective after SAH and finally examines the evidence supporting Nrf2 upregulation as a therapy after SAH.
Collapse
|
4
|
Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects. Mediators Inflamm 2016; 2016:1346390. [PMID: 27990061 PMCID: PMC5136666 DOI: 10.1155/2016/1346390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.
Collapse
|
5
|
Veldeman M, Höllig A, Clusmann H, Stevanovic A, Rossaint R, Coburn M. Delayed cerebral ischaemia prevention and treatment after aneurysmal subarachnoid haemorrhage: a systematic review. Br J Anaesth 2016; 117:17-40. [PMID: 27160932 DOI: 10.1093/bja/aew095] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED : The leading cause of morbidity and mortality after surviving the rupture of an intracranial aneurysm is delayed cerebral ischaemia (DCI). We present an update of recent literature on the current status of prevention and treatment strategies for DCI after aneurysmal subarachnoid haemorrhage. A systematic literature search of three databases (PubMed, ISI Web of Science, and Embase) was performed. Human clinical trials assessing treatment strategies, published in the last 5 yr, were included based on full-text analysis. Study data were extracted using tables depicting study type, sample size, and outcome variables. We identified 49 studies meeting our inclusion criteria. Clazosentan, magnesium, and simvastatin have been tested in large high-quality trials but failed to show a beneficial effect. Cilostazol, eicosapentaenoic acid, erythropoietin, heparin, and methylprednisolone yield promising results in smaller, non-randomized or retrospective studies and warrant further investigation. Topical application of nicardipine via implants after clipping has been shown to reduce clinical and angiographic vasospasm. Methods to improve subarachnoid blood clearance have been established, but their effect on outcome remains unclear. Haemodynamic management of DCI is evolving towards euvolaemic hypertension. Endovascular rescue therapies, such as percutaneous transluminal balloon angioplasty and intra-arterial spasmolysis, are able to resolve angiographic vasospasm, but their effect on outcome needs to be proved. Many novel therapies for preventing and treating DCI after aneurysmal subarachnoid haemorrhage have been assessed, with variable results. Limitations of the study designs often preclude definite statements. Current evidence does not support prophylactic use of clazosentan, magnesium, or simvastatin. Many strategies remain to be tested in larger randomized controlled trials. CLINICAL TRIAL REGISTRATION This systematic review was registered in the international prospective register of systematic reviews. PROSPERO CRD42015019817.
Collapse
Affiliation(s)
- M Veldeman
- Department of Neurosurgery Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - A Stevanovic
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - R Rossaint
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - M Coburn
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Liu YF, Qiu HC, Su J, Jiang WJ. Drug treatment of cerebral vasospasm after subarachnoid hemorrhage following aneurysms. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0023-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Kertmen H, Gürer B, Yilmaz ER, Arikok AT, Kanat MA, Ergüder BI, Sekerci Z. The comparative effects of recombinant human erythropoietin and darbepoetin-alpha on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir (Wien) 2014; 156:951-62. [PMID: 24497025 DOI: 10.1007/s00701-014-2008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/18/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Darbepoetin alpha is a hypersialylated analogue of erythropoietin effective for activating erythropoietin-receptors. This study investigated the vasodilator and neuroprotective effects of darbepoetin alpha on an experimental subarachnoid hemorrhage model and compared it with erythropoietin. METHODS Forty adult male New Zealand white rabbits were randomly divided into four groups of ten rabbits each: group 1 (control), group 2 (subarachnoid hemorrhage), group 3 (erythropoietin), and group 4 (darbepoetin alpha). Recombinant human erythropoietin was administered at a dose of 1,000 U/kg intraperitoneally after the induction of subarachnoid hemorrhage and continued every 8 h up to 72 h. Darbepoetin alpha was administered at a single intraperitoneal dose of 30 μg/kg. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, hippocampal degeneration scores and biochemical analyses were measured in all groups. RESULTS Both erythropoietin and darbepoetin alpha treatments were found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Darbepoetin alpha revealed better morphometric and histopathological results than erythropoietin among experimental subarachnoid hemorrhage-induced vasospasm. CONCLUSIONS Our findings, for the first time, showed that darbepoetin alpha can prevent vasospasm and provides neuroprotection following experimental subarachnoid hemorrhage. Moreover, darbepoetin alpha showed better results when compared with erythropoietin.
Collapse
Affiliation(s)
- Hayri Kertmen
- Neurosurgery Clinic, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
8
|
Kooijman E, Nijboer CH, van Velthoven CTJ, Kavelaars A, Kesecioglu J, Heijnen CJ. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 2014; 11:2. [PMID: 24386932 PMCID: PMC3892045 DOI: 10.1186/1742-2094-11-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.
Collapse
Affiliation(s)
- Elke Kooijman
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy TJ van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Güresir E, Vasiliadis N, Konczalla J, Raab P, Hattingen E, Seifert V, Vatter H. Erythropoietin prevents delayed hemodynamic dysfunction after subarachnoid hemorrhage in a randomized controlled experimental setting. J Neurol Sci 2013; 332:128-35. [DOI: 10.1016/j.jns.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
10
|
Nitric oxide in cerebral vasospasm: theories, measurement, and treatment. Neurol Res Int 2013; 2013:972417. [PMID: 23878735 PMCID: PMC3708422 DOI: 10.1155/2013/972417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022] Open
Abstract
In recent decades, a large body of research has focused on the role of nitric oxide (NO) in the development of cerebral vasospasm (CV) following subarachnoid hemorrhage (SAH). Literature searches were therefore conducted regarding the role of NO in cerebral vasospasm, specifically focusing on NO donors, reactive nitrogen species, and peroxynitrite in manifestation of vasospasm. Based off the assessment of available evidence, two competing theories are reviewed regarding the role of NO in vasospasm. One school of thought describes a deficiency in NO due to scavenging by hemoglobin in the cisternal space, leading to an NO signaling deficit and vasospastic collapse. A second hypothesis focuses on the dysfunction of nitric oxide synthase, an enzyme that synthesizes NO, and subsequent generation of reactive nitrogen species. Both theories have strong experimental evidence behind them and hold promise for translation into clinical practice. Furthermore, NO donors show definitive promise for preventing vasospasm at the angiographic and clinical level. However, NO augmentation may also cause systemic hypotension and worsen vasospasm due to oxidative distress. Recent evidence indicates that targeting NOS dysfunction, for example, through erythropoietin or statin administration, also shows promise at preventing vasospasm and neurotoxicity. Ultimately, the role of NO in neurovascular disease is complex. Neither of these theories is mutually exclusive, and both should be considered for future research directions and treatment strategies.
Collapse
|
11
|
Siasios I, Kapsalaki EZ, Fountas KN. Cerebral vasospasm pharmacological treatment: an update. Neurol Res Int 2013; 2013:571328. [PMID: 23431440 PMCID: PMC3572649 DOI: 10.1155/2013/571328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage- (aSAH-) associated vasospasm constitutes a clinicopathological entity, in which reversible vasculopathy, impaired autoregulatory function, and hypovolemia take place, and lead to the reduction of cerebral perfusion and finally ischemia. Cerebral vasospasm begins most often on the third day after the ictal event and reaches the maximum on the 5th-7th postictal days. Several therapeutic modalities have been employed for preventing or reversing cerebral vasospasm. Triple "H" therapy, balloon and chemical angioplasty with superselective intra-arterial injection of vasodilators, administration of substances like magnesium sulfate, statins, fasudil hydrochloride, erythropoietin, endothelin-1 antagonists, nitric oxide progenitors, and sildenafil, are some of the therapeutic protocols, which are currently employed for managing patients with aSAH. Intense pathophysiological mechanism research has led to the identification of various mediators of cerebral vasospasm, such as endothelium-derived, vascular smooth muscle-derived, proinflammatory mediators, cytokines and adhesion molecules, stress-induced gene activation, and platelet-derived growth factors. Oral, intravenous, or intra-arterial administration of antagonists of these mediators has been suggested for treating patients suffering a-SAH vasospam. In our current study, we attempt to summate all the available pharmacological treatment modalities for managing vasospasm.
Collapse
Affiliation(s)
- Ioannis Siasios
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Eftychia Z. Kapsalaki
- Department of Diagnostic Radiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Kostas N. Fountas
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Institute of Biomolecular & Biomedical Research (BIOMED), Center for Research and Technology - Thessaly (CERETETH), 38500 Larissa, Greece
| |
Collapse
|
12
|
|
13
|
Helbok R, Shaker E, Beer R, Chemelli A, Sojer M, Sohm F, Broessner G, Lackner P, Beck M, Zangerle A, Pfausler B, Thome C, Schmutzhard E. High dose erythropoietin increases brain tissue oxygen tension in severe vasospasm after subarachnoid hemorrhage. BMC Neurol 2012; 12:32. [PMID: 22672319 PMCID: PMC3502085 DOI: 10.1186/1471-2377-12-32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/17/2012] [Indexed: 01/09/2023] Open
Abstract
Background Vasospasm-related delayed cerebral ischemia (DCI) significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH). Erythropoietin (EPO) may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2). Methods Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM) received systemic EPO therapy (30.000 IU per day for 3 consecutive days) for severe cerebral vasospasm. Cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), intracranial pressure (ICP), PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. Results A total of 22 interventions were analyzed. Median age was 47 years (32–68) and 86 % were female. Three patients (38 %) developed DCI. MAP decreased 2 hours after intervention (P < 0.04) without significantly affecting CPP and ICP. PbtO2 significantly increased over time (P < 0.05) to a maximum of 7 ± 4 mmHg increase 16 hours after infusion. Brain metabolic parameters did not change over time. Conclusions EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.
Collapse
Affiliation(s)
- Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grasso G, Tomasello F. Erythropoietin for subarachnoid hemorrhage: is there a reason for hope? World Neurosurg 2011; 77:46-8. [PMID: 22079816 DOI: 10.1016/j.wneu.2011.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 11/27/2022]
|
15
|
Chang CZ, Wu SC, Kwan AL, Hwang SL, Howng SL. Magnesium lithospermate B alleviates the production of endothelin-1 through an NO-dependent mechanism and reduces experimental vasospasm in rats. Acta Neurochir (Wien) 2011; 153:2211-7. [PMID: 21833783 DOI: 10.1007/s00701-011-1082-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/22/2011] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Magnesium lithospermate B (MLB), a working extract from Salvia miltiorrhiza, was effective against coronary artery disease, ischemic stroke, and chronic renal disease. This study examined the effect of MLB on endothelin-1/endothelial nitric oxide synthase (eNOS) in a subarachnoid hemorrhage (SAH) animal model. METHODS A rodent double-hemorrhage model was employed. Animals were randomly assigned to five groups (sham, SAH only, vehicle, 10 mg/kg/day MLB treatment, and pretreatment groups). A radiolabeled NOS Assay Kit was used to detect eNOS. Serum and cerebrospinal fluid sampling for ET-1 (ELISA) was measured. The basilar arteries (BAs) were garnered and sliced, and their cross-sectional areas were determined. In addition, NOS inhibitor nitro-arginine methyl ester (L-NAME) was employed in the SAH+ MLB treatment groups. RESULTS Significant vasoconstriction was perceived in the SAH group (lumen patency: 44.6%, p < 0.01), but not in the MLB group (lumen patency: 89.3%). The ET-1 level was reduced in the MLP plus SAH group (34%, p < 0.01) when compared with the SAH groups (SAH only and vehicle). MLB dose-dependently increased the level of eNOS when compared with the vehicle plus SAH group. However, the administration of L-NAME reversed the expression of eNOS and vasoconstriction (lumen patency: 56.2%) in the MLB group. CONCLUSION The enhanced expression of eNOS and decreased ET-1 levels in the MLB groups may reflect its anti-spastic effect. In the study of NOS, L-NAME reversed MLB's anti-vasospastic effect. This finding lends credence to the hypothesis that MLB modulates ET-1 levels through a NOS-dependent mechanism in the pathogenesis of cerebral vasospasm following SAH.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Erythropoietin and subarachnoid hemorrhage. World Neurosurg 2010; 73:461-2. [PMID: 20920923 DOI: 10.1016/j.wneu.2010.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Indexed: 11/24/2022]
|