1
|
Wu H, Cheng Y, Gao W, Chen P, Wei Y, Zhao H, Wang F. Progress in the application of ultrasound in glioma surgery. Front Med (Lausanne) 2024; 11:1388728. [PMID: 38957299 PMCID: PMC11218567 DOI: 10.3389/fmed.2024.1388728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Brain glioma, which is highly invasive and has a poor prognosis, is the most common primary intracranial tumor. Several studies have verified that the extent of resection is a considerable prognostic factor for achieving the best results in neurosurgical oncology. To obtain gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of existing devices, it is imperative to develop a real-time image-guided resection technique to offer reliable functional and anatomical information during surgery. At present, the application of intraoperative ultrasound (IOUS) has been indicated to enhance resection rates and maximize brain function preservation. IOUS, which is promising due to its lower cost, minimal operational flow interruptions, and lack of radiation exposure, can enable real-time localization and precise tumor size and form descriptions while assisting in discriminating residual tumors and solving brain tissue shifts. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound (CEUS), three-dimensional ultrasound (3DUS), noninvasive ultrasound (NUS), and ultrasound elastography (UE), could assist in achieving GTR in glioma surgery. This article reviews the advantages and disadvantages of IOUS in glioma surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
2
|
Reyes Soto G, Murillo Ponce C, Catillo-Rangel C, Cacho Diaz B, Nurmukhametov R, Chmutin G, Natalaja Mukengeshay J, Mpoyi Tshiunza C, Ramirez MDJE, Montemurro N. Intraoperative Ultrasound: An Old but Ever New Technology for a More Personalized Approach to Brain Tumor Surgery. Cureus 2024; 16:e62278. [PMID: 39006708 PMCID: PMC11246190 DOI: 10.7759/cureus.62278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Although the use of transcranial ultrasound dates to the mid-20th century, the main purpose of this research work is to standardize its use in the resection of brain tumors. This is due to its wide availability, low cost, lack of contraindications, and absence of harmful effects for the patient and medical staff, along with the possibility of real-time verification of the complete resection of tumor lesions and minimization of vascular injuries or damage to adjacent structures. METHODS A retrospective study was conducted from June to December 2022. The study included eight patients (three men and five women) aged between 32 and 76 years. Histological examination revealed two high-grade gliomas, one low-grade glioma, and five metastatic lesions. RESULTS The low-grade glioma appeared as a homogeneously echogenic structure and easily distinguishable from brain parenchyma, whereas metastases and high-grade gliomas showed higher echogenicity, being identified as malignant lesions due to areas of low echogenicity necrosis and peritumoral edema identified as a hyperechogenic structure. CONCLUSIONS The use of intraoperative transcranial ultrasound constitutes an important tool for neurosurgeons during tumor resection. Although it is easy to use, intraoperative ultrasound requires a relatively short learning curve and a good understanding of the fundamentals of ultrasound. Its main advantage over neuronavigation is that it is not affected by the "brain shift" phenomenon that commonly occurs during tumor resection, since the ultrasound images are updated during surgery.
Collapse
Affiliation(s)
- Gervith Reyes Soto
- Neurosurgical Oncology, Instituto Nacional de Cancerología, Mexico City, MEX
| | | | - Carlos Catillo-Rangel
- Neurosurgery, Hospital Regional 1ro de Octubre (ISSSTE or Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado), Mexico City, MEX
| | | | - Renat Nurmukhametov
- Neurosurgery, 2nd National Clinical Centre of Federal State Budgetary Research Institution (Russian Research Center of Surgery named after Academician B.V. Petrovsky), Moscow, RUS
| | - Gennady Chmutin
- Neurosurgery, Peoples' Friendship University of Russia (RUDN University), Moscow, RUS
| | | | | | | | - Nicola Montemurro
- Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP) University of Pisa, Pisa, ITA
| |
Collapse
|
3
|
Rammeloo E, Schouten JW, Krikour K, Bos EM, Berger MS, Nahed BV, Vincent AJPE, Gerritsen JKW. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 2023; 165:413-430. [PMID: 38095774 DOI: 10.1007/s11060-023-04509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice. METHODS A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study's Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use. RESULTS This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS. CONCLUSIONS There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.
Collapse
Affiliation(s)
- Emma Rammeloo
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Joost Willem Schouten
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Keghart Krikour
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mitchel Stuart Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jasper Kees Wim Gerritsen
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Application of Multiparametric Intraoperative Ultrasound in Glioma Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651726. [PMID: 33954192 PMCID: PMC8068524 DOI: 10.1155/2021/6651726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
Gliomas are the most invasive and fatal primary malignancy of the central nervous system that have poor prognosis, with maximal safe resection representing the gold standard for surgical treatment. To achieve gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of currently available equipment, developing a real-time image-guided resection technique that provides reliable functional and anatomical information during intraoperative settings is imperative. Nowadays, the application of intraoperative ultrasound (IOUS) has been shown to improve resection rates and maximize brain function preservation. IOUS, which presents an attractive option due to its low cost, minimal operational flow interruptions, and lack of radiation exposure, is able to provide real-time localization and accurate tumor size and shape descriptions while helping distinguish residual tumors and addressing brain shift. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound, three-dimensional ultrasound, navigable ultrasound, ultrasound elastography, and functional ultrasound, could help to achieve GTR during glioma surgery. The current review describes current advancements in ultrasound technology and evaluates the role and limitation of IOUS in glioma surgery.
Collapse
|
5
|
Metwali H, De Luca A, Ibrahim T, Leemans A, Samii A. Data-Driven Identification of the Regions of Interest for Fiber Tracking in Patients with Brain Tumors. World Neurosurg 2020; 143:e275-e284. [PMID: 32711144 DOI: 10.1016/j.wneu.2020.07.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND We investigated the added value of combining information from direction-encoded color (DEC) maps with high-resolution structural magnetic resonance imaging scans (T1-weighted images [T1WIs]) to improve the identification of regions of interest (ROIs) for fiber tracking during preoperative planning for patients with brain tumors. METHODS The dataset included 42 patients with gliomas and 10 healthy subjects from the Human Connectome Project. For identification of the ROIs, we combined the structural information from high-resolution T1WIs and the directional information from DEC maps. To test our hypothesis, we examined the interrater and intrarater agreement. RESULTS We identified specific ROIs to extract the main white matter bundles. The directional information from the DEC maps combined with the T1WIs (T1WI-DEC maps) had significantly facilitated ROI identification in patients with brain tumors, especially patients in whom the tracts had been displaced by the mass effect of the tumor. Fiber tracking using the combined T1WI-DEC maps showed significantly greater inter- and intrarater agreement compared with using either T1WI or DEC maps alone. CONCLUSION Combining the information from diffusion-derived color-encoded maps with high-resolution anatomical details from structural imaging (T1WI-DEC map), especially in patients with brain tumors, could be useful for accurate identification of the ROIs.
Collapse
Affiliation(s)
- Hussam Metwali
- Kliniken Nordoberpfalz AG, Klinikum Weiden, Weiden in der Oberpfalz, Germany.
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tamer Ibrahim
- Department of Neurosurgery, Alexandria University, Alexandria, Egypt
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amir Samii
- Department of neurosurgery, International Neuroscience Institute, Hannover, Germany
| |
Collapse
|
6
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
7
|
New Hope in Brain Glioma Surgery: The Role of Intraoperative Ultrasound. A Review. Brain Sci 2018; 8:brainsci8110202. [PMID: 30463249 PMCID: PMC6266135 DOI: 10.3390/brainsci8110202] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Maximal safe resection represents the gold standard for surgery of malignant brain tumors. As regards gross-total resection, accurate localization and precise delineation of the tumor margins are required. Intraoperative diagnostic imaging (Intra-Operative Magnetic Resonance-IOMR, Intra-Operative Computed Tomography-IOCT, Intra-Operative Ultrasound-IOUS) and dyes (fluorescence) have become relevant in brain tumor surgery, allowing for a more radical and safer tumor resection. IOUS guidance for brain tumor surgery is accurate in distinguishing tumor from normal parenchyma, and it allows a real-time intraoperative visualization. We aim to evaluate the role of IOUS in gliomas surgery and to outline specific strategies to maximize its efficacy. We performed a literature research through the Pubmed database by selecting each article which was focused on the use of IOUS in brain tumor surgery, and in particular in glioma surgery, published in the last 15 years (from 2003 to 2018). We selected 39 papers concerning the use of IOUS in brain tumor surgery, including gliomas. IOUS exerts a notable attraction due to its low cost, minimal interruption of the operational flow, and lack of radiation exposure. Our literature review shows that increasing the use of ultrasound in brain tumors allows more radical resections, thus giving rise to increases in survival.
Collapse
|
8
|
Hanna AS, Ehlers ME, Lee KS. Preoperative Ultrasound-Guided Wire Localization of the Lateral Femoral Cutaneous Nerve. Oper Neurosurg (Hagerstown) 2017; 13:402-408. [PMID: 28521342 PMCID: PMC6312085 DOI: 10.1093/ons/opw009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Difficulty and sometimes inability to find the lateral femoral cutaneous nerve (LFCN) intraoperatively is well known. Variabilities in the course of the nerve are well documented in the literature. In a previous paper, we defined a tight fascial canal that completely surrounds the LFCN in the proximal thigh. These 2 factors sometimes render finding the nerve intraoperatively, to treat meralgia paresthetica, very challenging. OBJECTIVE To explore the use of preoperative ultrasound to minimize operative time and eliminate situations in which the nerve is not found. METHODS Since 2011, we have used preoperative ultrasound-guided wire localization (USWL) in 19 cases to facilitate finding the nerve intraoperatively. Data were collected prospectively with recording of the timing from skin incision to identifying the LFCN; this will be referred to as the skin-to-nerve time. RESULTS In 2 cases, the localization was incorrect. In the 17 cases in which the LFCN was correctly localized, the skin-to-nerve time ranged from 3 min to 19 min. The mean was 8.5 min, and the median was 8 min. CONCLUSION Preoperative USWL is a useful technique that minimizes the time needed to find the LFCN. For the less experienced surgeon, it is extremely valuable. For the experienced surgeon, it can identify anatomical abnormalities such as duplicate nerves, which may not be readily recognizable without ultrasound. Collaboration between the surgeon and the radiologist is very important, especially in the early cases.
Collapse
Affiliation(s)
- Amgad S. Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisco-nsin
| | - Mark E. Ehlers
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kenneth S. Lee
- Department of Radiology, University of Wisconsin, Madison, Wisc-onsin
| |
Collapse
|