1
|
Wang L, Zhou H, Zheng W, Wang H, Wang Z, Dong X, Du Q. Clinical value of serum complement component 1q levels in the prognostic analysis of aneurysmal subarachnoid hemorrhage: a prospective cohort study. Front Neurol 2024; 15:1341731. [PMID: 38356892 PMCID: PMC10864439 DOI: 10.3389/fneur.2024.1341731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Objective To analyze the relationship between serum complement component 1q (C1q) levels and functional prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH), and to reveal its clinical value. Methods In this prospective cohort study, we collected clinical data of aSAH patients admitted to the Department of Neurosurgery, Hangzhou First People's Hospital from January 2020 to October 2022. Parameters such as serum C1q levels, Hunt-Hess grade, modified Fisher grade, and the modified Rankin scale (mRS) at 3 months were included for evaluation. Patients were grouped based on the occurrence of delayed cerebral ischemia (DCI). Spearman rank correlation test and Kruskal-Wallis rank sum test were used to analyze the correlation between serum C1q levels, disease severity, and prognosis. Potential risk factors affecting prognosis and the occurrence of DCI were screened through Independent sample t-test or Mann-Whitney U test. Variables with significant differences (p < 0.05) were incorporated into a logistic regression model to identify independent risk factors affecting prognosis and DCI occurrence. Serum C1q levels were plotted as a ROC curve for predicting prognosis and DCI, and the area under the curve was calculated. Results A total of 107 aSAH patients were analyzed. Serum C1q levels positively correlated with Hunt-Hess grade, modified Fisher grade and mRS (all p < 0.001). Significant differences were observed in C1q levels among different Hunt-Hess grade, mFisher grade and mRS (all p < 0.001). Notably, higher serum C1q levels were seen in the poor prognosis group and DCI group, and correlated with worse prognosis (OR = 36.927, 95%CI 2.003-680.711, p = 0.015), and an increased risk for DCI (OR = 17.334, 95%CI 1.161-258.859, p = 0.039). ROC analysis revealed the significant discriminative power of serum C1q levels for poor prognosis (AUC 0.781; 95%CI 0.673-0.888; p < 0.001) and DCI occurrence (AUC 0.763; 95%CI 0.637-0.888; p < 0.001). Higher C1q levels independently predicted a poor prognosis and DCI with equivalent predictive abilities to Hunt-Hess grade and modified Fisher grade (both p < 0.05). Conclusion High levels of C1q in the blood is an independent risk factor for poor prognosis and the development of DCI in patients with aSAH. This can more objectively and accurately predict functional outcomes and the incidence of DCI. C1q may have a significant role in the mechanism behind DCI after aSAH.
Collapse
Affiliation(s)
- Linjie Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haotian Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhao Zheng
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Heng Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
Ledbetter LN, Burns J, Shih RY, Ajam AA, Brown MD, Chakraborty S, Davis MA, Ducruet AF, Hunt CH, Lacy ME, Lee RK, Pannell JS, Pollock JM, Powers WJ, Setzen G, Shaines MD, Utukuri PS, Wang LL, Corey AS. ACR Appropriateness Criteria® Cerebrovascular Diseases-Aneurysm, Vascular Malformation, and Subarachnoid Hemorrhage. J Am Coll Radiol 2021; 18:S283-S304. [PMID: 34794589 DOI: 10.1016/j.jacr.2021.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Cerebrovascular disease is a broad topic. This document focuses on the imaging recommendations for the varied clinical scenarios involving intracranial aneurysms, vascular malformations, and vasculitis, which all carry high risk of morbidity and mortality. Additional imaging recommendations regarding complications of these conditions, including subarachnoid hemorrhage and vasospasm, are also covered. While each variant presentation has unique imaging recommendations, the major focus of this document is neurovascular imaging techniques. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Luke N Ledbetter
- Director, Head and Neck Imaging, University of California Los Angeles, Los Angeles, California.
| | - Judah Burns
- Panel Chair and Program Director, Diagnostic Radiology Residency Program, Montefiore Medical Center, Bronx, New York
| | - Robert Y Shih
- Panel Vice-Chair, Uniformed Services University, Bethesda, Maryland
| | - Amna A Ajam
- Ohio State University, Columbus, Ohio; Chief of Neuroradiology & MRI at WRNMMC; and Associate Chief of Neuroradiology for AIRP
| | - Michael D Brown
- Michigan State University, East Lansing, Michigan, American College of Emergency Physicians
| | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada, Canadian Association of Radiologists
| | - Melissa A Davis
- Director of Quality, Radiology, Emory University, Atlanta, Georgia; ACR YPS Communications Liaison
| | - Andrew F Ducruet
- Barrow Neurological Institute, Phoenix, Arizona, Neurosurgery expert
| | | | - Mary E Lacy
- University of New Mexico, Albuquerque, New Mexico, American College of Physicians
| | - Ryan K Lee
- Chair, Department of Radiology, Einstein Healthcare Network, Philadelphia, Pennsylvania
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - William J Powers
- University of North Carolina School of Medicine, Chapel Hill, North Carolina; American Academy of Neurology; Chair, Writing Group, American Heart Association/American Stroke Association Guidelines for the Early Management of Patients with Acute Ischemic Stroke, 2016-2019
| | - Gavin Setzen
- Albany ENT & Allergy Services, PC, Albany, New York; American Academy of Otolaryngology-Head and Neck Surgery; President, Albany ENT & Allergy Services, PC
| | - Matthew D Shaines
- Associate Chief, Hospital Medicine, Albert Einstein College of Medicine Montefiore Medical Center, Bronx, New York; Internal medicine physician
| | - Pallavi S Utukuri
- Clinical Site Director, Department of Radiology, Allen Hospital, New York Presbyterian, New York, New York; and Columbia University Medical Center, New York, New York
| | - Lily L Wang
- University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Ricci A, Di Vitantonio H, De Paulis D, Del Maestro M, Raysi SD, Murrone D, Luzzi S, Galzio RJ. Cortical aneurysms of the middle cerebral artery: A review of the literature. Surg Neurol Int 2017; 8:117. [PMID: 28680736 PMCID: PMC5482160 DOI: 10.4103/sni.sni_50_17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2017] [Indexed: 11/06/2022] Open
Abstract
Background: Middle cerebral artery (MCA) aneurysms constitute from 18–40% of all intracranial aneurysms. They are mainly found in the proximal and bifurcation tracts and only in the 1.1-1.7% of cases they are located in the distal segment. The authors report a case of a ruptured saccular cortical MCA aneurysm with unknown etiology. Case Description: A 53-year-old female was admitted with a sudden severe headache, nausea, vomiting, and a slight left hemiparesis. The computed tomography (CT) scan showed subarachnoid hemorrhage (SAH) in the left sylvian fissure and intracerebral hemorrhage (ICH) in the left posterior parietal area. The CT angiography (CTA) reconstructed with 3D imaging showed a small saccular aneurysm in the M4 segment in proximity of the angular area. A left parieto-temporal craniotomy was performed, the aneurysm was clipped and the ICH evacuated. The motor deficit was progressively recovered. At 3-month follow-up examination, the patient was asymptomatic and feeling well. Conclusions: In our opinion, surgery is the best choice for the treatment of ruptured M4 aneurysms with ICH, because it allows to evacuate the hematoma and to exclude the aneurysm from the intracranial circulation. In addition, we suggest both the use of the neuronavigation technique and of the indocyanine green videoangiography (ICGV) for the aneurismal surgery.
Collapse
Affiliation(s)
- Alessandro Ricci
- Department of Neurosurgery, San Salvatore City Hospital, L'Aquila, Italy
| | | | - Danilo De Paulis
- Department of Neurosurgery, San Salvatore City Hospital, L'Aquila, Italy
| | - Mattia Del Maestro
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Italy
| | - Soheila Dehcordi Raysi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Italy
| | - Domenico Murrone
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Italy
| | - Sabino Luzzi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Italy
| | - Renato Juan Galzio
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, Italy
| |
Collapse
|
4
|
Guberina N, Dietrich U, Forsting M, Ringelstein A. Comparison of eye-lens doses imparted during interventional and non-interventional neuroimaging techniques for assessment of intracranial aneurysms. J Neurointerv Surg 2017; 10:168-170. [DOI: 10.1136/neurintsurg-2016-012970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 11/04/2022]
Abstract
BackgroundA neurointerventional examination of intracranial aneurysms often involves the eye lens in the primary beam of radiation.ObjectiveTo assess and compare eye-lens doses imparted during interventional and non-interventional imaging techniques for the examination of intracranial aneurysms.MethodsWe performed a phantom study on an anthropomorphic phantom (ATOM dosimetry phantom 702-D; CIRS, Norfolk, Virginia, USA) and assessed eye-lens doses with thermoluminescent dosimeters (TLDs) type 100 (LiF:Mg, Ti) during (1) interventional (depiction of all cerebral arteries with triple 3D-rotational angiography and twice 2-plane DSA anteroposterior and lateral projections) and (2) non-interventional (CT angiography (CTA)) diagnosis of intracranial aneurysms. Eye-lens doses were calculated following recommendations of the ICRP 103. Image quality was analysed in retrospective by two experienced radiologists on the basis of non-interventional and interventional pan-angiography examinations of patients with incidental aneurysms (n=50) on a five-point Likert scale.ResultsThe following eye-lens doses were assessed: (1) interventional setting (triple 3D-rotational angiography and twice 2-plane DSA anteroposterior and lateral projections) 12 mGy; (2) non-interventional setting (CTA) 4.1 mGy. Image quality for depiction of intracranial aneurysms (>3 mm) was evaluated as good by both readers for both imaging techniques.ConclusionsEye-lens doses are markedly higher during the interventional than during the non-interventional diagnosis of intracranial aneurysms. For the eye-lens dose, CTA offers considerable radiation dose savings in the diagnosis of intracranial aneurysms.
Collapse
|