1
|
Roohbakhsh A, Etemad L, Karimi G. Resolvin D1: A key endogenous inhibitor of neuroinflammation. Biofactors 2022; 48:1005-1026. [PMID: 36176016 DOI: 10.1002/biof.1891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
After the initiation of inflammation, a series of processes start to resolve the inflammation. A group of endogenous lipid mediators, namely specialized pro-resolving lipid mediators is at the top list of inflammation resolution. Resolvin D1 (RvD1), is one of the lipid mediators with significant anti-inflammatory properties. It is produced from docosahexaenoic acid (omega-3 polyunsaturated fatty acid) in the body. In this article, we aimed to review the most recent findings concerning the pharmacological effects of RvD1 in the central nervous system with a focus on major neurological diseases and dysfunctions. A literature review of the past studies demonstrated that RvD1 plasma level changes during mania, depression, and Parkinson's disease. Furthermore, RVD1 and its epimer, aspirin-triggered RvD1 (AT-RvD1), have significant therapeutic effects on experimental models of ischemic and traumatic brain injuries, memory dysfunction, pain, depression, amyotrophic lateral sclerosis, and Alzheimer's and Parkinson's diseases. Interestingly, the beneficial effects of RvD1 and AT-RvD1 were mostly induced at nanomolar and micromolar concentrations implying the significant potency of these lipid mediators in treating diseases with inflammation.
Collapse
Affiliation(s)
- Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Schreibman DL, Hong CM, Keledjian K, Ivanova S, Tsymbalyuk S, Gerzanich V, Simard JM. Mannitol and Hypertonic Saline Reduce Swelling and Modulate Inflammatory Markers in a Rat Model of Intracerebral Hemorrhage. Neurocrit Care 2019; 29:253-263. [PMID: 29700692 DOI: 10.1007/s12028-018-0535-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spontaneous intracerebral hemorrhage (ICH) leaves most survivors dependent at follow-up. The importance of promoting M2-like microglial responses is increasingly recognized as a key element to ameliorate brain injury following ICH. The osmotherapeutic agents, mannitol and hypertonic saline (HTS), which are routinely used to reduce intracranial pressure, have been shown to reduce neuroinflammation in experimental ischemic and traumatic brain injury, but anti-inflammatory effects of osmotherapies have not been investigated in ICH. METHODS We studied the effects of iso-osmotic mannitol and HTS in rat models of ICH utilizing high-dose and moderate-dose collagenase injections into the basal ganglia, associated with high and low mortality, respectively. We studied the effects of osmotherapies, first given 5 h after ICH induction, and then administered every 12 h thereafter (4 doses total). Immunohistochemistry was used to quantify microglial activation and polarization. RESULTS Compared to controls, mannitol and HTS increased plasma osmolarity 1 h after infusion (301 ± 1.5, 315 ± 4.2 and 310 ± 2.0 mOsm/kg, respectively), reduced mortality at 48 h (82, 36 and 53%, respectively), and reduced hemispheric swelling at 48 h (32, 21, and 17%, respectively). In both perihematomal and contralateral tissues, mannitol and HTS reduced activation of microglia/macrophages (abundance and morphology of Iba1 + cells), and in perihematomal tissues, they reduced markers of the microglia/macrophage M1-like phenotype (nuclear p65, TNF, and NOS2), increased markers of the microglia/macrophage M2-like phenotype (arginase, YM1, and pSTAT3), and reduced infiltration of CD45 + cells. CONCLUSIONS Repeated dosing of osmotherapeutics at regular intervals may be a useful adjunct to reduce neuroinflammation following ICH.
Collapse
Affiliation(s)
- David L Schreibman
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Caron M Hong
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Solomiya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol 2019; 18:1058-1066. [PMID: 31296369 DOI: 10.1016/s1474-4422(19)30078-x] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Stroke, including acute ischaemic stroke and intracerebral haemorrhage, results in neuronal cell death and the release of factors such as damage-associated molecular patterns (DAMPs) that elicit localised inflammation in the injured brain region. Such focal brain inflammation aggravates secondary brain injury by exacerbating blood-brain barrier damage, microvascular failure, brain oedema, oxidative stress, and by directly inducing neuronal cell death. In addition to inflammation localised to the injured brain region, a growing body of evidence suggests that inflammatory responses after a stroke occur and persist throughout the entire brain. Global brain inflammation might continuously shape the evolving pathology after a stroke and affect the patients' long-term neurological outcome. Future efforts towards understanding the mechanisms governing the emergence of so-called global brain inflammation would facilitate modulation of this inflammation as a potential therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Kaibin Shi
- Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - De-Cai Tian
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi-Guo Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Andrew F Ducruet
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael T Lawton
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Fu-Dong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Contralateral Brain Atrophy in Conservatively Treated Primary Intracerebral Hemorrhage. World Neurosurg 2019; 128:e391-e396. [PMID: 31029818 DOI: 10.1016/j.wneu.2019.04.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND In patients with intracerebral hemorrhage (ICH), brain volume loss can occur in the hemisphere ipsilateral to the hematoma. However, contralateral hemispheric volume change after ICH is not well known. The present study aimed to investigate contralateral brain volume changes in patients with ICH who had not undergone surgery. METHODS Of the 2213 patients with ICH admitted to our hospital between January 2010 and December 2017, 46 patients without surgical intervention were included in the present study. We measured contralateral hemispheric brain volume in the axial images of brain computed tomography at the time of ICH onset and after 12 months. We analyzed the relationship between various factors and volume changes in the contralateral hemisphere. RESULTS The mean change percentage between the initial and follow-up contralateral parenchyma volume was 96.84%. The average volume decreased by 3.16% (P = 0.001). Univariate and multivariate logistic regression models revealed no significant factors associated with contralateral brain volume loss. Kruskal-Wallis test and Mann-Whitney U test showed no statistical significance (P = 0.824, P = 0.122) between ICH volume groups. CONCLUSIONS Contralateral parenchymal volumes were significantly decreased at follow-up brain computed tomography scanning; these changes may provide important clinical information on the remote effect of focal lesion and symptoms in the course of ICH treatment. However, further investigation is required to determine the mechanisms underlying these volume changes.
Collapse
|