1
|
A review of vascular endothelial growth factor and its potential to improve functional outcomes following spinal cord injury. Spinal Cord 2023; 61:231-237. [PMID: 36879041 DOI: 10.1038/s41393-023-00884-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Spinal cord injuries (SCI) are traumatic events with limited treatment options. Following injury, the lesion site experiences a drastic change to both its structure and vasculature which reduces its ability for tissue regeneration. Despite the lack of clinical options, researchers are investigating therapies to induce neuronal regeneration. Cell-based therapies have long been assessed in the context of SCI to promote neuronal protection and repair. Vascular endothelial growth factor (VEGF) not only demonstrates this ability, but also demonstrates angiogenic potential to promote blood vessel formation. While there have been numerous animal studies investigating VEGF, further research is still warranted to pinpoint its role following SCI. This review aims to discuss the literature surrounding the role of VEGF following SCI and its potential in promoting functional recovery.
Collapse
|
2
|
Long HQ, Ren ZX, Xu JH, Cheng X, Xu GX. Pathophysiological mechanisms of chronic compressive spinal cord injury due to vascular events. Neural Regen Res 2023; 18:790-796. [DOI: 10.4103/1673-5374.353485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Liu Y, Liu Q, Yang Z, Li R, Huang Z, Huang Z, Liu J, Wu X, Lin J, Wu X, Zhu Q. Trihydroxyethyl Rutin Provides Neuroprotection in Rats With Cervical Spinal Cord Hemi-Contusion. Front Neurosci 2021; 15:759325. [PMID: 34867167 PMCID: PMC8637531 DOI: 10.3389/fnins.2021.759325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: To investigate the neuroprotective effects of trihydroxyethyl rutin in rats with cervical spinal cord hemi-contusion. Methods: Adult male Sprague–Dawley rats were subjected to hemi-contusion at a stroke depth of 1.2 mm, and then intraperitoneally injected with 50 or 100 mg/kg trihydroxyethyl rutin per day for 12 weeks (T50 and T100 groups, respectively). Changes in somatosensory evoked potentials (SEPs), motor evoked potentials (MEPs), and behavior were continuously monitored. At 12 weeks post-injury, immunohistochemical staining was performed to assess changes in cervical spinal cord microvascular morphology. Magnetic resonance imaging (MRI) scans were performed to examine end-stage injury in the cervical spinal cord, and Eriochrome cyanine-stained slices of spinal cord tissue were evaluated for injury. Results: There were no significant differences in biomechanical parameters among the spinal cord injury, T50 and T100 rat groups. At 3 days-post-injury, there was a significant decrease in grip strength. At 12 weeks post-injury, grip strength recovery was significantly better in the T50 and T100 groups than in the injury group. Compared with the injury group, the total limb placement frequency was significantly higher in the T50 group at 2, 4, 6, 10, and 12 weeks post-injury and in the T100 group at 2, 6, 8, and 10 weeks post-injury. Ipsilateral SEPs and MEPs were dynamic, increasing in latency and decreasing in amplitude in the injury compared with sham group. MRI scanning demonstrated that the coronal, sagittal, and transversal lesion areas were smaller in the T50 and T100 groups than in the injury group. Microvascular density showed a greater reduction in the injury group compared with the T50 and T100 groups. Eriochrome cyanine staining showed that the ipsilateral side, residual parenchyma, and gray matter areas were larger in the T50 and T100 groups than in the injury group. Conclusion: Trihydroxyethyl rutin exhibits robust neuroprotective effects, improving limb motor function and nerve electrophysiological parameters after spinal cord injury, maintaining microvascular density, and reducing the area of injury and degree of demyelination.
Collapse
Affiliation(s)
- Yapu Liu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Spinal Surgery, Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Qi Liu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Yang
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Huang
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhao Liu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhua Wu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Lin
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Wu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingan Zhu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhu S, Yang BS, Li SJ, Tong G, Tan JY, Wu GF, Li L, Chen GL, Chen Q, Lin LJ. Protein post-translational modifications after spinal cord injury. Neural Regen Res 2021; 16:1935-1943. [PMID: 33642363 PMCID: PMC8343325 DOI: 10.4103/1673-5374.308068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 11/04/2022] Open
Abstract
Deficits in intrinsic neuronal capacities in the spinal cord, a lack of growth support, and suppression of axonal outgrowth by inhibitory molecules mean that spinal cord injury almost always has devastating consequences. As such, one of the primary targets for the treatment of spinal cord injury is to develop strategies to antagonize extrinsic or intrinsic axonal growth-inhibitory factors or enhance the factors that support axonal growth. Among these factors, a series of individual protein level disorders have been identified during the generation of axons following spinal cord injury. Moreover, an increasing number of studies have indicated that post-translational modifications of these proteins have important implications for axonal growth. Some researchers have discovered a variety of post-translational modifications after spinal cord injury, such as tyrosination, acetylation, and phosphorylation. In this review, we reviewed the post-translational modifications for axonal growth, functional recovery, and neuropathic pain after spinal cord injury, a better understanding of which may elucidate the dynamic change of spinal cord injury-related molecules and facilitate the development of a new therapeutic strategy for spinal cord injury.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bing-Sheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Si-Jing Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ge Tong
- Department of Medical Ultrasonics, Guangdong Province Key Laboratory of Hepatology Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Ye Tan
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Feng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Li Chen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Li-Jun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|