1
|
Iannalfi A, Riva G, Lillo S, Ciccone L, Fontana G, Molinelli S, Trombetta L, Ciocca M, Imparato S, Pecorilla M, Orlandi E. Proton therapy for intracranial meningioma: a single-institution retrospective analysis of efficacy, survival and toxicity outcomes. J Neurooncol 2024; 169:683-692. [PMID: 38918319 DOI: 10.1007/s11060-024-04751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE To report the outcomes of a large series of intracranial meningiomas (IMs) submitted to proton therapy (PT) with curative intent. METHODS We conducted a retrospective analysis on all consecutive IM patients treated between 2014 and 2021. The median PT prescription dose was 55.8 Gy relative biological effectiveness (RBE) and 66 GyRBE for benign/radiologically diagnosed and atypical/anaplastic IMs, respectively. Local recurrence-free survival (LRFS), distant recurrence-free survival (DRFS), overall survival (OS), and radionecrosis-free survival (RNFS) were evaluated with the Kaplan-Meier method. Univariable analysis was performed to identify potential prognostic factors for clinical outcomes. Toxicity was reported according to the latest Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS Overall, 167 patients were included. With a median follow-up of 41 months (range, 6-99), twelve patients (7%) developed tumor local recurrence after a median time of 39 months. The 5-year LRFS was 88% for the entire cohort, with a significant difference between benign/radiologically diagnosed and atypical/anaplastic IMs (98% vs. 47%, p < 0.001); this significant difference was maintained also for the 5-year OS and the 5-year DRFS rates. Patients aged ≤ 56 years reported significantly better outcomes, whereas lower prescription doses and skull base location were associated with better RNFS rates. Two patients experienced G3 acute toxicities (1.2%), and three patients G3 late toxicities (1.8%). There were no G4-G5 adverse events. CONCLUSION PT proved to be effective with an acceptable toxicity profile. To the best of our knowledge this is one of the largest series including IM patients submitted to PT.
Collapse
Affiliation(s)
- Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Sara Lillo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy.
| | - Lucia Ciccone
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Giulia Fontana
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Silvia Molinelli
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Luca Trombetta
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Mario Ciocca
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Sara Imparato
- Radiology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Mattia Pecorilla
- Radiology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
2
|
Eekers DBP, Zegers CML, Ahmed KA, Amelio D, Gupta T, Harrabi SB, Kazda T, Scartoni D, Seidel C, Shih HA, Minniti G. Controversies in neuro-oncology: Focal proton versus photon radiation therapy for adult brain tumors. Neurooncol Pract 2024; 11:369-382. [PMID: 39006517 PMCID: PMC11241386 DOI: 10.1093/nop/npae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Radiation therapy (RT) plays a fundamental role in the treatment of malignant and benign brain tumors. Current state-of-the-art photon- and proton-based RT combines more conformal dose distribution of target volumes and accurate dose delivery while limiting the adverse radiation effects. PubMed was systematically searched from from 2000 to October 2023 to identify studies reporting outcomes related to treatment of central nervous system (CNS)/skull base tumors with PT in adults. Several studies have demonstrated that proton therapy (PT) provides a reduced dose to healthy brain parenchyma compared with photon-based (xRT) radiation techniques. However, whether dosimetric advantages translate into superior clinical outcomes for different adult brain tumors remains an open question. This review aims at critically reviewing the recent studies on PT in adult patients with brain tumors, including glioma, meningiomas, and chordomas, to explore its potential benefits compared with xRT.
Collapse
Affiliation(s)
- Danielle B P Eekers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kamran A Ahmed
- Departments of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Dante Amelio
- Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University and Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniele Scartoni
- Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Clemens Seidel
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- IRCCS Neuromed, Pozzilli IS, Italy
| |
Collapse
|
3
|
Wilson TA, Kang Jr JI, Huang L, Vacaru A, Martins KN, Boling WW. Adjuvant proton beam therapy in patients with grade 2 meningiomas. Surg Neurol Int 2024; 15:62. [PMID: 38468681 PMCID: PMC10927181 DOI: 10.25259/sni_485_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Background The World Health Organization (WHO) grade 2 meningiomas behave aggressively with a high proclivity toward recurrence despite maximal surgical resection. Our institution, a pioneer of proton therapy, uses exclusively proton beam radiation, and thus, we present a retrospective cohort analysis of patients with WHO grade 2 meningiomas treated with adjuvant proton beam therapy (PBT) at our institution between 2007 and 2019. The effects of adjuvant PBT were evaluated. Methods Data collected include diagnosis, gender, histological subtype, WHO grade, the extent of surgical resection, adjuvant PBT radiation, details of the PBT radiation, recurrence, any additional PBT radiation, systemic medical therapy, and disease-specific survival. Results Among the WHO grade 2 meningiomas (n = 50) recommended PBT, 80% and 78% of patients with gross-total resection (GTR) and subtotal resection (STR), respectively, followed through with PBT. The median radiation dose of PBT was 59.5 Gy and 59.92 Gy for patients with GTR and STR, respectively, with a median of 33 fractions delivered in 1.8 Gy doses for both groups. Combined 3-year progression-free survival (PFS) was 96%, and 5-year PFS was 92%. Combined overall survival was 95% at five years. Minimal radiation side effects were reported with no grade 3 or higher toxicities. Conclusion Our results suggest that adjuvant PBT is well tolerated with minimal radiation toxicity. Alternative to photon radiation, PBT may be considered at least as safe and effective for adjuvant treatment of WHO grade 2 meningiomas when it is available.
Collapse
Affiliation(s)
- Taylor Anne Wilson
- Department of Neurology, Loma Linda University Medical Center, Loma Linda, California, United States
| | | | - Lei Huang
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, California, United States
| | - Alexandra Vacaru
- School of Medicine, Loma Linda University, Loma Linda, California, United States
| | | | - Warren W. Boling
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, California, United States
| |
Collapse
|
4
|
Qiu X, Gao J, Hu J, Yang J, Hu W, Huang Q, Zhang H, Lu JJ, Kong L. Particle beam radiotherapy in the treatment of WHO grade 2 and 3 meningiomas: an early experience from Shanghai Proton and Heavy Ion Center. J Neurooncol 2023; 165:241-250. [PMID: 37976030 DOI: 10.1007/s11060-023-04401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/17/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To investigate the efficacy and safety of particle beam radiotherapy (PBRT) in the management of patients with WHO grade 2 and 3 meningiomas. METHODS Thirty-six consecutive and non-selected patients with WHO grade 2 (n = 28) and grade 3 (n = 8) meningiomas were treated at the Shanghai Proton and Heavy Ion Center, from May 2015 to March 2022. The median age of the cohort at PBRT was 48 years. There were 25 and 11 patients treated with PBRT in the setting of newly diagnosed diseases and progressive/recurrent diseases, respectively. PBRT was utilized as re-irradiation in 5 patients. Proton radiotherapy (PRT) and carbon-ion radiotherapy (CIRT), with a median dose of 60 Gy-Equivalent (GyE), were provided to 30 and 6 patients, respectively. RESULTS With a median follow-up of 23.3 months, the local control rates were 92.0%, 82.0%, and 82.0% at 1, 2, and 3 years for the entire cohort, respectively. Patients with WHO grade 2 meningiomas (100%, 94.1%, 94,1% at 1,2,3 years) had a much better local control than those with WHO grade 3 meningiomas (50%, 25%, 25% at 1,2,3 years; P < 0.001). Three patients, all with WHO grade 3 meningiomas, had deceased at the time of this analysis. Multivariate analyses revealed that WHO grade (grade 2 vs. 3) (p = 0.016) was a significant prognosticator for local control. No severe toxicities (G3 or above) were observed. CONCLUSIONS Treatment-induced efficacy and toxicities to PBRT in WHO grade 2 and 3 meningiomas were both highly acceptable. Longer follow-up is needed to evaluate the long-term outcome in terms of disease control, survival, as well as potential late effects.
Collapse
Affiliation(s)
- Xianxin Qiu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Gao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weixu Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Haojiong Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Proton and Heavy Ion Center, Heyou International Hospital, Tumor, Guangdong, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
| |
Collapse
|
5
|
Iannalfi A, Riva G, Ciccone L, Orlandi E. The role of particle radiotherapy in the treatment of skull base tumors. Front Oncol 2023; 13:1161752. [PMID: 37350949 PMCID: PMC10283010 DOI: 10.3389/fonc.2023.1161752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
The skull base is an anatomically and functionally critical area surrounded by vital structures such as the brainstem, the spinal cord, blood vessels, and cranial nerves. Due to this complexity, management of skull base tumors requires a multidisciplinary approach involving a team of specialists such as neurosurgeons, otorhinolaryngologists, radiation oncologists, endocrinologists, and medical oncologists. In the case of pediatric patients, cancer management should be performed by a team of pediatric-trained specialists. Radiation therapy may be used alone or in combination with surgery to treat skull base tumors. There are two main types of radiation therapy: photon therapy and particle therapy. Particle radiotherapy uses charged particles (protons or carbon ions) that, due to their peculiar physical properties, permit precise targeting of the tumor with minimal healthy tissue exposure. These characteristics allow for minimizing the potential long-term effects of radiation exposure in terms of neurocognitive impairments, preserving quality of life, and reducing the risk of radio-induced cancer. For these reasons, in children, adolescents, and young adults, proton therapy should be an elective option when available. In radioresistant tumors such as chordomas and sarcomas and previously irradiated recurrent tumors, particle therapy permits the delivery of high biologically effective doses with low, or however acceptable, toxicity. Carbon ion therapy has peculiar and favorable radiobiological characteristics to overcome radioresistance features. In low-grade tumors, proton therapy should be considered in challenging cases due to tumor volume and involvement of critical neural structures. However, particle radiotherapy is still relatively new, and more research is needed to fully understand its effects. Additionally, the availability of particle therapy is limited as it requires specialized equipment and expertise. The purpose of this manuscript is to review the available literature regarding the role of particle radiotherapy in the treatment of skull base tumors.
Collapse
|
6
|
Lee G, Shih HA. The Role of Radiotherapy in the Treatment of Higher-Grade Meningioma. Neurosurg Clin N Am 2023; 34:463-478. [DOI: 10.1016/j.nec.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Pettersson-Segerlind J, Fletcher-Sandersjöö A, von Vogelsang AC, Persson O, Kihlström Burenstam Linder L, Förander P, Mathiesen T, Edström E, Elmi-Terander A. Long-Term Follow-Up, Treatment Strategies, Functional Outcome, and Health-Related Quality of Life after Surgery for WHO Grade 2 and 3 Intracranial Meningiomas. Cancers (Basel) 2022; 14:cancers14205038. [PMID: 36291821 PMCID: PMC9600120 DOI: 10.3390/cancers14205038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Meningiomas are the most common group of primary intracranial tumors. While the majority are classified as WHO grade 1, WHO grade 2 and 3 meningiomas have poorer outcomes, even after gross total resection, and often require supplementary treatment. Long-term follow-up data regarding the progression-free survival (PFS) and overall survival (OS) for grade 2 and 3 tumors are scarce, and data evaluating the routine use of supplementary radiotherapy and radiosurgery have been inconclusive. Furthermore, few studies have reported data on the health-related quality of life (HRQoL), anxiety, and depression for these patients. In this population-based cohort study, we reviewed 51 cases of WHO grade 2 and 3 meningiomas. We found that the median OS was 13 years for grade 2 and 1.4 years for grade 3 meningiomas. Meningioma was the cause of death in 93% of the patients who passed away. The surviving patients showed HRQoL measures comparable to that of the general population, with the exception of significantly more anxiety and depression. All patients who worked preoperatively returned to work after their treatment. Abstract Progression-free survival (PFS) and overall survival (OS) for WHO grade 2 and 3 intracranial meningiomas are poorly described, and long-term results and data evaluating the routine use of supplementary fractionated radiotherapy (RT) or stereotactic radiosurgery (SRS) has been inconclusive. The aim of this study was to determine the long-term PFS and OS at a center that does not employ routine adjuvant RT. For this purpose, a retrospective population-based cohort study was conducted of all WHO grade 2 and 3 meningiomas surgically treated between 2005 and 2013. The cohort was uniformly defined according to the WHO 2007 criteria to allow comparisons to previously published reports. Patient records were reviewed, and patients were then prospectively contacted for structured quality-of-life assessments. In total, 51 consecutive patients were included, of whom 43 were WHO grade 2 and 8 were grade 3. A Simpson grade 1–2 resection was achieved in 62%. The median PFS was 31 months for grade 2 tumors, and 3.4 months for grade 3. The median OS was 13 years for grade 2, and 1.4 years for grade 3. The MIB-1-index was significantly associated with an increased risk for recurrence (p = 0.018, OR 1.12). The median PFS was significantly shorter for high-risk tumors compared to the low-risk group (10 vs. 46 months; p = 0.018). The surviving meningioma patients showed HRQoL measures comparable to that of the general population, with the exception of significantly more anxiety and depression. All patients who worked before surgery returned to work after their treatment. In conclusion, we confirm dismal prognoses in patients with grade 2 and 3 meningiomas, with tumor-related deaths resulting in severely reduced OS. However, the cohort was heterogenous, and a large subgroup of both grade 2 and 3 meningiomas was alive at 10 years follow-up, suggesting that a cure is possible. In addition, fractionated radiotherapy and chemotherapy had little benefit when introduced for recurrent and progressive diseases.
Collapse
Affiliation(s)
- Jenny Pettersson-Segerlind
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ann-Christin von Vogelsang
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Oscar Persson
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Kihlström Burenstam Linder
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Petter Förander
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tiit Mathiesen
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Institute of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Erik Edström
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
8
|
Radiation therapy for atypical and anaplastic meningiomas: an overview of current results and controversial issues. Neurosurg Rev 2022; 45:3019-3033. [PMID: 35665867 PMCID: PMC9492595 DOI: 10.1007/s10143-022-01806-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023]
Abstract
Meningiomas are the most common intracranial tumors. Most meningiomas are WHO grade 1 tumors whereas less than one-quarter of all meningiomas are classified as atypical (WHO grade 2) and anaplastic (WHO grade 3) tumors, based on local invasiveness and cellular features of atypia. Surgical resection remains the cornerstone of meningioma therapy and represents the definitive treatment for the majority of patients; however, grade 2 and grade 3 meningiomas display more aggressive behavior and are difficult to treat. Several retrospective series have shown the efficacy and safety of postoperative adjuvant external beam radiation therapy (RT) for patients with atypical and anaplastic meningiomas. More recently, two phase II prospective trials by the Radiation Therapy Oncology Group (RTOG 0539) and the European Organisation for Research and Treatment of Cancer (EORTC 2042) have confirmed the potential benefits of fractionated RT for patients with intermediate and high-risk meningiomas; however, several issues remain a matter of debate. Controversial topics include the timing of radiation treatment in patients with totally resected atypical meningiomas, the optimal radiation technique, dose and fractionation, and treatment planning/target delineation. Ongoing randomized trials are evaluating the efficacy of early adjuvant RT over observation in patients undergoing gross total resection.
Collapse
|
9
|
Li JY, Li JW, Jin YC, Li MX, Guo LP, Bing ZT, Zhang QN, Bai F, Wang XH, Li XX, Yang KH. The Efficacy and Safety of Carbon Ion Radiotherapy for Meningiomas: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:620534. [PMID: 34113557 PMCID: PMC8185343 DOI: 10.3389/fonc.2021.620534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Objective The purpose of this systematic review and meta-analysis is to evaluate the efficacy and safety of carbon ion radiotherapy (CI-RT) in improving meningioma by comparing photon and protons radiotherapy. Methods A comprehensive search for relevant studies published until March 17, 2021, was conducted in PubMed, the Cochrane Library, Chinese Biomedical Literature Database and EMBASE. Statistical analyses were performed with R 4.0.3. Results We identified 396 studies, of which 18 studies involving 985 participants were included. Except for one low quality study, the quality of the included studies was found to be either moderate or high quality. The analyses conducted according random effects model indicated that the 1-year overall survival rate (OS) of benign and non-benign meningiomas after the CI-RT treatment was 99% (95%CL=.91-1.00, I2 = 0%). The overall average 5-year OS for meningiomas was 72% (95%CL=0.52-0.86, I2 = 35%), not as effective as proton radiotherapy (PR-RT) 85% (95%CL=.72-.93, I2 = 73, Q=4.17, df=2, p=.12). Additionally, 5-year OS of atypical meningiomas (81%) was found to be significantly higher than anaplastic meningiomas (52%). The 10-year OS after CI-RT of patients with mixed grade meningioma was 91% (95%CL=.75-.97, I2 = 73%). The 15-year OS after CI-RT 87% (95%CL=.11-1.00) or PR-RT 87% (95%CL=.23-.99, I2 = 79%) were the same (Q=0, df=1, p=.99). After undergoing CI-RT for 3 and 5 years, the LC for benign meningioma was 100% and 88%, respectively, while the 2-year LC of non-benign meningiomas (atypical/anaplastic) was 33%. Headache, sensory impairment, cognitive impairment, and hearing impairment were found to be the most common adverse reactions, with individual incidences of 19.4%, 23.7%, 9.1%, and 9.1%, respectively. Conclusion CI-RT is a rapidly developing technique that has been proven to be an effective treatment against meningioma. The efficacy and safety of CI-RT for meningiomas were similar to those of PR-RT, better than photon radiotherapy (PH-RT). However, there is a need for more prospective trials in the future that can help provide more supportive evidence.
Collapse
Affiliation(s)
- Jie-Yun Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Jing-Wen Li
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Yuan-Chang Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Mei-Xuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Li-Ping Guo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Zhi-Tong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Fei Bai
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,National Health Commission Medical Management Center, Beijing, China
| | - Xiao-Hu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Xiu-Xia Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Ke-Hu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
10
|
Chun SW, Kim KM, Kim MS, Kang H, Dho YS, Seo Y, Kim JW, Kim YH, Park CK. Adjuvant radiotherapy versus observation following gross total resection for atypical meningioma: a systematic review and meta-analysis. Radiat Oncol 2021; 16:34. [PMID: 33596974 PMCID: PMC7890913 DOI: 10.1186/s13014-021-01759-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background The impact of adjuvant radiotherapy (RT) on atypical meningioma (AM) underwent a gross total resection (GTR) remains unclear, showing conflicting results from various studies. The objective of this study was to perform an updated meta-analysis for observational studies to determine the effect of adjuvant RT after GTR on local recurrence and survival outcomes compared to observation after GTR. Methods PubMed, Embase, and Web of Science were searched to identify comparative studies that reported outcomes of adjuvant RT versus observation for AM patients after GTR. Local recurrence rate, progression-free survival (PFS), overall survival (OS), and toxicities related to RT were considered as outcomes of interest. Differences between two cohorts were estimated by calculating odds ratios (OR) for LR rate and hazard ratios (HR) for survival outcomes with 95% confidence intervals (CIs) for meta-analysis, using R version 4.0.3 software. Included studies were appraised with the Risk of Bias Assessment tool for Non-Randomized Studies. Outcome ratios were combined with the Mantel–Haenszel method and the inverse variance-weighted method, appropriately. Results Data from 30 studies involving 2904 patients (adjuvant RT: n = 737; observation: n = 2167) were eventually included. Significant reduction of local recurrence rate was seen in the adjuvant RT cohort compare to that in the observation cohort (OR 0.50; 95% CI 0.36–0.68; p < 0.0001). Pooled HRs of PFS at 1-year, 3-year, 5-year, and > 5-year revealed that adjuvant RT was superior to observation. There was no significant difference in OS between the two cohorts during any period. Most toxicities were tolerable with grade 1 or 2. There was no documented grade 5 toxicity. Conclusions For AM patients who underwent GTR, evidence suggested that adjuvant RT could potentially decrease local recurrence and improve PFS better than observation.
Collapse
Affiliation(s)
- Se-Woong Chun
- Department of Rehabilitation Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, Korea
| | - Kyung Min Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Youngbeom Seo
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yong Hwy Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| |
Collapse
|
11
|
Buizza G, Paganelli C, Ballati F, Sacco S, Preda L, Iannalfi A, Alexander DC, Baroni G, Palombo M. Improving the characterization of meningioma microstructure in proton therapy from conventional apparent diffusion coefficient measurements using Monte Carlo simulations of diffusion MRI. Med Phys 2021; 48:1250-1261. [PMID: 33369744 DOI: 10.1002/mp.14689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/08/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Proton therapy could benefit from noninvasively gaining tumor microstructure information, at both planning and monitoring stages. The anatomical location of brain tumors, such as meningiomas, often hinders the recovery of such information from histopathology, and conventional noninvasive imaging biomarkers, like the apparent diffusion coefficient (ADC) from diffusion-weighted MRI (DW-MRI), are nonspecific. The aim of this study was to retrieve discriminative microstructural markers from conventional ADC for meningiomas treated with proton therapy. These markers were employed for tumor grading and tumor response assessment. METHODS DW-MRIs from patients affected by meningioma and enrolled in proton therapy were collected before (n = 35) and 3 months after (n = 25) treatment. For the latter group, the risk of an adverse outcome was inferred by their clinical history. Using Monte Carlo methods, DW-MRI signals were simulated from packings of synthetic cells built with well-defined geometrical and diffusion properties. Patients' ADC was modeled as a weighted sum of selected simulated signals. The weights that best described a patient's ADC were determined through an optimization procedure and used to estimate a set of markers of tumor microstructure: diffusion coefficient (D), volume fraction (vf), and radius (R). Apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretability. Differences between meningothelial and atypical subtypes, and low- and high-grade meningiomas were assessed with nonparametric statistical tests, whereas sensitivity and specificity with ROC analyses. Similar analyses were performed for patients showing low or high risk of an adverse outcome to preliminary evaluate response to treatment. RESULTS Significant (P < 0.05) differences in median ADC, D, vf, R, and ρapp values were found when comparing meningiomas' subtypes and grades. ROC analyses showed that estimated microstructural parameters reached higher specificity than ADC for subtyping (0.93 for D and vf vs 0.80 for ADC) and grading (0.75 for R vs 0.67 for ADC). High- and low-risk patients showed significant differences in ADC and microstructural parameters. The skewness of ρapp was the parameter with highest AUC (0.90) and sensitivity (0.75). CONCLUSIONS Matching measured with simulated ADC yielded a set of potential imaging markers for meningiomas grading and response monitoring in proton therapy, showing higher specificity than conventional ADC. These markers can provide discriminative information about spatial patterns of tumor microstructure implying important advantages for patient-specific proton therapy workflows.
Collapse
Affiliation(s)
- Giulia Buizza
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, 20133, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, 20133, Italy
| | - Francesco Ballati
- Diagnostic Radiology Residency School, University of Pavia, Pavia, 27100, Italy
| | - Simone Sacco
- Diagnostic Radiology Residency School, University of Pavia, Pavia, 27100, Italy
| | - Lorenzo Preda
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Alberto Iannalfi
- Clinical Department, National Center of Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London (UCL), London, WC1V6LJ, UK
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, 20133, Italy.,Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, 27100, Italy
| | - Marco Palombo
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London (UCL), London, WC1V6LJ, UK
| |
Collapse
|
12
|
Wilson TA, Huang L, Ramanathan D, Lopez-Gonzalez M, Pillai P, De Los Reyes K, Kumal M, Boling W. Review of Atypical and Anaplastic Meningiomas: Classification, Molecular Biology, and Management. Front Oncol 2020; 10:565582. [PMID: 33330036 PMCID: PMC7714950 DOI: 10.3389/fonc.2020.565582] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Although the majority of meningiomas are slow-growing and benign, atypical and anaplastic meningiomas behave aggressively with a penchant for recurrence. Standard of care includes surgical resection followed by adjuvant radiation in anaplastic and partially resected atypical meningiomas; however, the role of adjuvant radiation for incompletely resected atypical meningiomas remains debated. Despite maximum treatment, atypical, and anaplastic meningiomas have a strong proclivity for recurrence. Accumulating mutations over time, recurrent tumors behave more aggressively and often become refractory or no longer amenable to further surgical resection or radiation. Chemotherapy and other medical therapies are available as salvage treatment once standard options are exhausted; however, efficacy of these agents remains limited. This review discusses the risk factors, classification, and molecular biology of meningiomas as well as the current management strategies, novel therapeutic approaches, and future directions for managing atypical and anaplastic meningiomas.
Collapse
Affiliation(s)
| | - Lei Huang
- Loma Linda University, Loma Linda, CA, United States
| | | | | | - Promod Pillai
- Loma Linda University, Loma Linda, CA, United States
| | | | | | - Warren Boling
- Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|