1
|
Cao L, Chen C, Pi W, Zhang Y, Xue S, Yong VW, Xue M. Exploring medical gas therapy in hemorrhagic stroke treatment: A narrative review. Nitric Oxide 2025; 156:94-106. [PMID: 40127886 DOI: 10.1016/j.niox.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Hemorrhagic stroke (HS) is a neurological disorder caused by the rupture of cerebral blood vessels, resulting in blood seeping into the brain parenchyma and causing varying degrees of neurological impairment, including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). Current treatment methods mainly include hematoma evacuation surgery and conservative treatment. However, these methods have limited efficacy in enhancing neurological function and prognosis. The current challenge in treating HS lies in inhibiting the occurrence and progression of secondary brain damage after bleeding, which is a key factor affecting the prognosis of HS patients. Studies have shown that medical gas therapy is gaining more attention and has demonstrated various levels of neuroprotective effects on central nervous system disorders, such as hyperbaric oxygen, hydrogen sulfide, nitric oxide, carbon monoxide, and other inhalable gas molecules. These medical gas molecules primarily improve brain tissue damage and neurological dysfunction by regulating inflammation, oxidative stress, apoptosis, and other processes. However, many of these medical gasses also possess neurotoxic properties. Therefore, the use of medical gases in HS deserves further exploration and research. In this review, we will elucidate the therapeutic effects and study the advances in medical gas molecules in HS.
Collapse
Affiliation(s)
- Liang Cao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Chen Chen
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhang
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Sara Xue
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Li H, Li D, Li M, Hu Z. The Predictive Value of PKC and ET-1 Levels in Cerebrospinal Fluid for Vasospasm and Prognosis in Patients with Aneurysmal Subarachnoid Hemorrhage. Int J Gen Med 2024; 17:4347-4358. [PMID: 39346632 PMCID: PMC11439365 DOI: 10.2147/ijgm.s468549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Objective To analyze the predictive value of protein kinase C (PKC) and endothelin-1 (ET-1) in cerebrospinal fluid for vasospasm and prognosis in patients with aneurysmal subarachnoid hemorrhage (ASH). Methods One hundred and forty-eight ASH patients hospitalized in our hospital during February 2019 to February 2022 were optioned as observation subjects. These subjects were graded into good prognosis group (mRS score 0-2, n = 102) and poor prognosis group (mRS score 3-6, n = 46) according to the Rankin Revised Scale Score (mRS) after 6 months of follow-up. Cerebrospinal fluid was collected from patients to detect the content of ET-1 and PKC. The prognostic factors were analyzed using multifactorial logistic regression. The predictive value was assessed using receiver operating characteristic (ROC) curve. Results The patients with poor prognosis had a higher age level and a higher proportion of ≥2 aneurysms, aneurysm diameter ≥6 mm, cerebral vasospasm, and Hunt-Hess grade ≥III than those with good prognosis (P < 0.05). The patients with poor prognosis had higher content of PKC and ET-1 than those with good prognosis (P < 0.05). Age, aneurysm diameter ≥6 mm, cerebral vasospasm, Hunt-Hess classification ≥grade III, PKC and ET-1 were all risk factors related to the prognosis of ASH (P < 0.05). The area under the curve (AUC) of PKC and ET-1 for diagnosing poor prognosis of ASH was 0.803 and 0.720, respectively. The AUC of the combined detection was 0.873 (P < 0.05). Patients with cerebrovascular spasm had higher content of PKC and ET-1 than those without (P < 0.05). The AUC of PKC and ET-1 for diagnosing cerebral vasospasm in ASH was 0.891 and 0.816, respectively, which was 0.932 for combined detection (P < 0.05). Conclusion The combination of PKC and ET-1 in cerebrospinal fluid had certain value in predicting the poor prognosis of patients with ASH.
Collapse
Affiliation(s)
- Hailong Li
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| | - Donghua Li
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| | - Mi Li
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| | - Zehong Hu
- Department of Neurosurgery, Panzhihua Central Hospital, Panzhihua City, Sichuan Province, People's Republic of China
| |
Collapse
|
3
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
4
|
Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res Bull 2022; 183:184-200. [PMID: 35304287 DOI: 10.1016/j.brainresbull.2022.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with a high mortality and disability rate. Nitric oxide (NO) can promote blood supply through vasodilation, leading to protein S-nitrosylation. However, the function of S-nitrosylation in neurons after SAH remains unclear. Excessive NO in the pathological state is converted into S-nitrosoglutathione (GSNO) and stored in cells, which leads to high S-nitrosylation of intracellular proteins and causes nitrosative stress. S-nitrosoglutathione reductase (GSNOR) promotes GSNO degradation and protects cells from excessive S-nitrosylation. We conducted an in vivo rat carotid puncture model and an in vitro neuron hemoglobin intervention. The results showed that SAH induction increased NO, GSNO, neuron protein S-nitrosylation, and neuronal apoptosis, while decreasing the level and activity of GSNOR. GSNOR overexpression by lentivirus decreased GSNO but had little effect on NO. GSNOR overexpression also improved short- and long-term neurobehavioral outcomes in rats and alleviated nitrosative stress. Furthermore, GSNOR reduced neuronal apoptosis and played a neuroprotective role by alleviating Drp1 S-nitrosylation, reducing mitochondrial division. Thus, the regulation of GSNOR in early brain injury and neuronal denitrosylation may play an important role in neuroprotection.
Collapse
|
5
|
Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary Brain Injury Following Intracerebral Hemorrhage. BIOLOGY 2021; 11:biology11010027. [PMID: 35053024 PMCID: PMC8772966 DOI: 10.3390/biology11010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Intracerebral hemorrhage (ICH) is a leading medical problem without effective treatment options. The poor prognosis is attributed to the primary brain injury of the mechanical compression caused by hematoma, and secondary brain injury (SBI) that includes inflammation, glutamate excitotoxicity, oxidative stress and disruption of the blood brain barrier (BBB). Evidences suggests that gap junctions and hemichannels composed of connexins and pannexins regulate the inflammation and excitotoxicity insult in the pathological process of central nervous system disease, such as cerebral ischemia and neurodegeneration disease. In this manuscript, we discuss the fact that connexins- and pannexins-based channels could be involved in secondary brain injury of ICH, particularly through mediating inflammation, oxidative stress, BBB disruption and cell death. The details provided in this manuscript may help develop potential targets for therapeutic intervention of ICH. Abstract Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity; the mortality rate ranges from 40% at 1 month to 54% at 1 year; only 12–39% achieve good outcomes and functional independence. ICH affects nearly 2 million patients worldwide annually. In ICH development, the blood leakage from ruptured vessels generates sequelae of secondary brain injury (SBI). This mechanism involves activated astrocytes and microglia, generation of reactive oxygen species (ROS), the release of reactive nitrogen species (RNS), and disrupted blood brain barrier (BBB). In addition, inflammatory cytokines and chemokines, heme compounds, and products of hematoma are accumulated in the extracellular spaces, thereby resulting in the death of brain cells. Recent evidence indicates that connexins regulate microglial activation and their phenotypic transformation. Moreover, communications between neurons and glia via gap junctions have crucial roles in neuroinflammation and cell death. A growing body of evidence suggests that, in addition to gap junctions, hemichannels (composed of connexins and pannexins) play a key role in ICH pathogenesis. However, the precise connection between connexin and pannexin channels and ICH remains to be resolved. This review discusses the pathological roles of gap junctions and hemichannels in SBI following ICH, with the intent of discovering effective therapeutic options of strategies to treat ICH.
Collapse
|
6
|
Mishra S, Garg K, Gaonkar VB, Singh PM, Singh M, Suri A, Chandra PS, Kale SS. Effects of Various Therapeutic Agents on Vasospasm and Functional Outcome After Aneurysmal Subarachnoid Hemorrhage-Results of a Network Meta-Analysis. World Neurosurg 2021; 155:41-53. [PMID: 34339892 DOI: 10.1016/j.wneu.2021.07.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Vasospasm and delayed ischemic neurologic deficits are the leading causes of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH). Several therapeutic agents have been assessed in randomized controlled trials for their efficacy in reducing the incidence of vasospasm and improving functional outcome. The aim of this network meta-analysis is to compare all these therapeutic agents for their effect on functional outcome and other parameters after aSAH. METHODS A comprehensive search of different databases was performed to retrieve randomized controlled trials describing the effect of various therapeutic approaches on functional outcome and other parameters after aSAH. RESULTS Ninety-two articles were selected for full text review and 57 articles were selected for the final analysis. Nicardipine prolonged-release implants were found to be the best treatment in terms of favorable outcome (odds ratio [OR], 8.55; 95% credible interval [CrI], 1.63-56.71), decreasing mortality (OR, 0.08; 95% CrI, 0-0.82), and preventing angiographic vasospasm (OR, 0.018; 95% CrI, 0.00057-0.16). Cilostazol was found to be the second-best treatment in improving favorable outcomes (OR, 3.58; 95% CrI, 1.97-6.57) and decreasing mortality (OR, 0.41; 95% CrI, 0.12-1.15). Fasudil (OR, 0.16; 95% CrI, 0.03-0.78) was found to be the best treatment in decreasing increased vessel velocity and enoxaparin (OR, 0.25; 95% CrI, 0.057-1.0) in preventing delayed ischemic neurologic deficits. CONCLUSIONS Our analysis showed that nicardipine prolonged-release implants and cilostazol were associated with the best chance of improving favorable outcome and mortality in patients with aSAH. However, larger multicentric studies from other parts of the world are required to confirm these findings.
Collapse
Affiliation(s)
- Sandeep Mishra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Kanwaljeet Garg
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India.
| | - Vishwa Bharathi Gaonkar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Preet Mohinder Singh
- Department of Anesthesia, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Shashank Sharad Kale
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
7
|
Chan AY, Choi EH, Yuki I, Suzuki S, Golshani K, Chen JW, Hsu FP. Cerebral vasospasm after subarachnoid hemorrhage: Developing treatments. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|