1
|
Breves SL, Di Giammartino DC, Nicholson J, Cirigliano S, Mahmood SR, Lee UJ, Martinez-Fundichely A, Jungverdorben J, Singhania R, Rajkumar S, Kirou R, Studer L, Khurana E, Polyzos A, Fine HA, Apostolou E. Three-dimensional regulatory hubs support oncogenic programs in glioblastoma. Mol Cell 2025; 85:1330-1348.e6. [PMID: 40147440 PMCID: PMC12009607 DOI: 10.1016/j.molcel.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Dysregulation of enhancer-promoter communication in the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of patient-derived glioblastoma stem cells to identify central regulatory nodes. We focused on hyperconnected 3D hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and are associated with oncogenic programs that distinguish glioblastoma from low-grade glioma. Epigenetic silencing of a recurrent hub-with an uncharacterized role in glioblastoma-was sufficient to cause downregulation of hub-connected genes, shifts in transcriptional states, and reduced clonogenicity. Integration of datasets across 16 cancers identified "universal" and cancer-type-specific 3D hubs that enrich for oncogenic programs and factors associated with worse prognosis. Genetic alterations could explain only a small fraction of hub hyperconnectivity and increased activity. Overall, our study provides strong support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties.
Collapse
Affiliation(s)
- Sarah L Breves
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - James Nicholson
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Cirigliano
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Syed Raza Mahmood
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Uk Jin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Martinez-Fundichely
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Jungverdorben
- Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Richa Singhania
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Sandy Rajkumar
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Raphael Kirou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ekta Khurana
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Howard A Fine
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Breves SL, Di Giammartino DC, Nicholson J, Cirigliano S, Mahmood SR, Lee UJ, Martinez-Fundichely A, Jungverdorben J, Singhania R, Rajkumar S, Kirou R, Studer L, Khurana E, Polyzos A, Fine HA, Apostolou E. Three-dimensional regulatory hubs support oncogenic programs in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629544. [PMID: 40034649 PMCID: PMC11875237 DOI: 10.1101/2024.12.20.629544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Dysregulation of enhancer-promoter communication in the context of the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of primary patient-derived glioblastoma stem cells (GSCs) in comparison with neuronal stem cells (NSCs) to identify potential central nodes and vulnerabilities in the regulatory logic of this devastating cancer. Specifically, we focused on hyperconnected 3D regulatory hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and strong association with oncogenic programs that distinguish IDH-wt glioblastoma patients from low-grade glioma. Epigenetic silencing of a recurrent 3D enhancer hub-with an uncharacterized role in glioblastoma-was sufficient to cause concordant downregulation of multiple hub-connected genes along with significant shifts in transcriptional states and reduced clonogenicity. By integrating published datasets from other cancer types, we also identified both universal and cancer type-specific 3D regulatory hubs which enrich for varying oncogenic programs and nominate specific factors associated with worse outcomes. Genetic alterations, such as focal duplications, could explain only a small fraction of the detected hyperconnected hubs and their increased activity. Overall, our study provides computational and experimental support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties.
Collapse
Affiliation(s)
- Sarah L. Breves
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- 3D Chromatin Conformation and RNA genomics laboratory, Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy (current affiliation)
| | - James Nicholson
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Stefano Cirigliano
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Syed Raza Mahmood
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Uk Jin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Martinez-Fundichely
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Jungverdorben
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Richa Singhania
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Sandy Rajkumar
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Raphael Kirou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ekta Khurana
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Howard A. Fine
- 3D Chromatin Conformation and RNA genomics laboratory, Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy (current affiliation)
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Halilibrahimoğlu H, Polat K, Keskin S, Genç O, Aslan O, Öztürk-Işık E, Yakıcıer C, Danyeli AE, Pamir MN, Özduman K, Dinçer A, Özcan A. Associating IDH and TERT Mutations in Glioma with Diffusion Anisotropy in Normal-Appearing White Matter. AJNR Am J Neuroradiol 2023; 44:553-561. [PMID: 37105678 PMCID: PMC10171376 DOI: 10.3174/ajnr.a7855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND PURPOSE IDH and TERT mutations might infiltratively manifest within normal-appearing white matter with specific phenotypes such as microstructural changes undetectable by standard MR imaging contrasts but potentially associable with DTI variables. The aim of this retrospective glioma study was to statistically investigate IDH and TERT associations and classifications with DTI reported microstructure in normal-appearing white matter. MATERIALS AND METHODS Retrospective data from patients imaged between March 2012 and February 2016 were analyzed by grouping them as IDH-TERT subgroups and by IDH and TERT mutation status. DTI variables in the IDH-TERT subgroups were first identified by the Kruskal-Wallis test, followed by Dunn-Šidák multiple comparisons with Bonferroni correction. IDH and TERT mutations were compared with the Mann-Whitney U test. Classification by thresholding was tested using receiver operating characteristic analysis. RESULTS Of 170 patients, 70 patients (mean age, 43.73 [SD, 15.32] years; 40 men) were included. Whole-brain normal-appearing white matter fractional anisotropy (FA) and relative anisotropy (RA) (P = .002) were significantly higher and the contralateral-ipsilateral hemispheric differences, ΔFA and ΔRA, (P < .001) were significantly lower in IDHonly patients compared with TERTonly, with a higher whole-brain normal-appearing white matter FA and RA (P = .01) and ΔFA and ΔRA (P = .002) compared to double positive patients. Whole-brain normal-appearing white matter ADC (P = .02), RD (P = .001), λ2 (P = .001), and λ3 (P = .001) were higher in IDH wild-type. Whole-brain normal-appearing white matter λ1 (AD) (P = .003), FA (P < .001), and RA (P = .003) were higher, but Δλ1 (P = .002), ΔFA, and ΔRA (P < .001) were lower in IDH mutant versus IDH wild-type. ΔFA (P = .01) and ΔRA (P = .02) were significantly higher in TERT mutant versus TERT wild-type. CONCLUSIONS Axial and nonaxial diffusivities, anisotropy indices in the normal-appearing white matter and their interhemispheric differences demonstrated microstructural differences between IDH and TERT mutations, with the potential for classification methods.
Collapse
Affiliation(s)
- H Halilibrahimoğlu
- Department of Biomedical Engineering (H.H.), McGill University, Montréal, Quebec, Canada
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
- Institute of Biomedical Engineering (H.H., O.G., E.Ö.-I.), Boğaziçi University Kandilli Campus, Çengelköy, Istanbul, Turkey
| | - K Polat
- From the Department of Electrical and Electronics Engineering (K.P., A.Ö.), Boğaziçi University, Bebek, Istanbul, Turkey
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
| | - S Keskin
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
| | - O Genç
- Institute of Biomedical Engineering (H.H., O.G., E.Ö.-I.), Boğaziçi University Kandilli Campus, Çengelköy, Istanbul, Turkey
| | - O Aslan
- Biomedical Imaging Research and Development Center (H.H., K.P., S.K., O.A.)
| | - E Öztürk-Işık
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
- Institute of Biomedical Engineering (H.H., O.G., E.Ö.-I.), Boğaziçi University Kandilli Campus, Çengelköy, Istanbul, Turkey
| | - C Yakıcıer
- YoctoSensum Biotechnoogy (C.Y.), Fenerbahçe, Istanbul, Turkey
| | - A E Danyeli
- Department of Pathology (A.E.D.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
| | - M N Pamir
- Department of Neurosurgery (M.N.P., K.Ö.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
| | - K Özduman
- Department of Neurosurgery (M.N.P., K.Ö.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
| | - A Dinçer
- Department of Radiology (A.D.)
- Brain Tumor Research Group (E.Ö.-I., A.E.D., M.N.P., K.Ö., A.D.)
- Center for Neuroradiological Advanced Research (E.Ö.-I., M.N.P., K.Ö., A.D.), Acibadem Mehmet Ali Aydinlar University, Ataşehir, Istanbul, Turkey
| | - A Özcan
- From the Department of Electrical and Electronics Engineering (K.P., A.Ö.), Boğaziçi University, Bebek, Istanbul, Turkey
| |
Collapse
|
4
|
Protein Quality Control in Glioblastoma: A Review of the Current Literature with New Perspectives on Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179734. [PMID: 36077131 PMCID: PMC9456419 DOI: 10.3390/ijms23179734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Protein quality control allows eukaryotes to maintain proteostasis under the stress of constantly changing conditions. In this review, we discuss the current literature on PQC, highlighting flaws that must exist for malignancy to occur. At the nidus of PQC, the expression of BAG1-6 reflects the cell environment; each isoform directs proteins toward different, parallel branches of the quality control cascade. The sum of these branches creates a net shift toward either homeostasis or apoptosis. With an established role in ALP, Bag3 is necessary for cell survival in stress conditions including those of the cancerous niche (i.e., hypoxia, hypermutation). Evidence suggests that excessive Bag3–HSP70 activity not only sustains, but also propagates cancers. Its role is anti-apoptotic—which allows malignant cells to persist—and intercellular—with the production of infectious ‘oncosomes’ enabling cancer expansion and recurrence. While Bag3 has been identified as a key prognostic indicator in several cancer types, its investigation is limited regarding glioblastoma. The cochaperone HSP70 has been strongly linked with GBM, while ALP inhibitors have been shown to improve GBM susceptibility to chemotherapeutics. Given the highly resilient, frequently recurrent nature of GBM, the targeting of Bag3 is a necessary consideration for the successful and definitive treatment of GBM.
Collapse
|
5
|
Rahman R, Ventz S, McDunn J, Louv B, Reyes-Rivera I, Polley MYC, Merchant F, Abrey LE, Allen JE, Aguilar LK, Aguilar-Cordova E, Arons D, Tanner K, Bagley S, Khasraw M, Cloughesy T, Wen PY, Alexander BM, Trippa L. Leveraging external data in the design and analysis of clinical trials in neuro-oncology. Lancet Oncol 2021; 22:e456-e465. [PMID: 34592195 PMCID: PMC8893120 DOI: 10.1016/s1470-2045(21)00488-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/20/2023]
Abstract
Integration of external control data, with patient-level information, in clinical trials has the potential to accelerate the development of new treatments in neuro-oncology by contextualising single-arm studies and improving decision making (eg, early stopping decisions). Based on a series of presentations at the 2020 Clinical Trials Think Tank hosted by the Society of Neuro-Oncology, we provide an overview on the use of external control data representative of the standard of care in the design and analysis of clinical trials. High-quality patient-level records, rigorous methods, and validation analyses are necessary to effectively leverage external data. We review study designs, statistical methods, risks, and potential distortions in using external data from completed trials and real-world data, as well as data sources, data sharing models, ongoing work, and applications in glioblastoma.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA.
| | - Steffen Ventz
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Jon McDunn
- Project Data Sphere, Morrisville, NC, USA
| | - Bill Louv
- Project Data Sphere, Morrisville, NC, USA
| | | | - Mei-Yin C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - David Arons
- National Brain Tumor Society, Newton, MA, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, MA, USA
| | - Stephen Bagley
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mustafa Khasraw
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Timothy Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA; Foundation Medicine, Cambridge, MA, USA
| | - Lorenzo Trippa
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|