1
|
Zhao Y, Zheng M, Ni BJ, Ni SQ. Making waves: Harnessing anammox bacteria coupled with dissimilatory nitrate reduction to ammonium for sustainable wastewater management. WATER RESEARCH X 2025; 27:100295. [PMID: 39807368 PMCID: PMC11728893 DOI: 10.1016/j.wroa.2024.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium. Significantly, it has been reported that some anammox bacteria can perform DNRA by reducing nitrate to nitrite and ammonium nitrogen with little low-molecular-weight organic acids such as volatile fatty acids. Here, we propose an innovative nitrogen removal process, i.e., nitrification and anammox coupled with partial DNRA (i.e., NPDA), and make a theoretical comparison with previously accepted partial nitrification and anammox (PNA) and partial denitrification and anammox (PdNA) for nitrogen removal. Under similar conditions of oxygen consumption, removal efficiency, external carbon source addition, and greenhouse gas emission, the novel NPDA process can better facilitate resource-effective and environment-friendly wastewater treatment. Thermodynamic analysis indicates that partial DNRA-anammox appears to be preferred, oxidizing per mole of NH4 +produces higher energy gain than that of conventional anammox alone. The carbon source limitation rather than nitrate limitation is the key to the realization of NPDA process. This perspective highlights the positive role of DNRA for sustainable wastewater management.
Collapse
Affiliation(s)
- Yiyi Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Li X, Jin Y, He Y, Wang Y, Zhu T, Zhao Y, Ni BJ, Liu Y. Mechanisms of N 2O production in salinity-adapted partial nitritation systems for high-ammonia wastewater treatment. WATER RESEARCH X 2025; 27:100311. [PMID: 40007969 PMCID: PMC11851288 DOI: 10.1016/j.wroa.2025.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Partial Nitritation/Anammox (PN/A) can achieve green, economical, and efficient biological nitrogen removal; however, the PN process contributes significantly to nitrous oxide (N2O, the third most important greenhouse gas) emissions. Balancing the stability of PN systems while reducing N2O emissions, particularly under varying salinity conditions, is a key challenge in applying PN/A for high-salinity and high-ammonia wastewater treatment. This study explored the long-term effects of salinity on PN performance and N2O emissions in PN systems treating high-ammonia wastewater. The results showed that the specific ammonia oxidation rates of the control and two salinity-acclimated PN reactors were 78.84, 75.03, and 42.60 mg N/(g VSS·h), indicating that low salinity (2.5 g NaCl/L) had minimal effect, while high salinity (10 g NaCl/L) significantly inhibited ammonia-oxidating bacteria and associated nitritation processes. Moreover, N2O emission factors increased from 0.08 ± 0.04% to 0.24 ± 0.03% as salinity rose from 0 to 10 g NaCl/L. Further analysis revealed that salinity stimulated N2O production in both aerobic and anoxic stages. Particularly, the N2O production increased by 2.84-11.14 times in the aerated stage and by 0.61-2.04 times in the nonaerated stage (i.e. anoxic and settling stages). Isotopic pathway analysis indicated that salinity enhanced N2O production primarily by stimulating the nitrite reduction pathway. Additionally, the mechanism investigation examined the combined effects of salinity-induced changes in sludge properties and microbial community on N2O emissions. These findings provide valuable insights for applying PN systems to treat high-strength wastewater and understanding the mechanisms of N2O emissions.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxin Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Zheng J, Zheng J, Zhang H, Huang X, Liu W, Ma X, Yang Q, Zhao L, Wang Y, Ji XM. The green footprint of anammox processes under simulated actual operating conditions: Focusing on the nitrous oxide and methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177330. [PMID: 39500455 DOI: 10.1016/j.scitotenv.2024.177330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
The anammox process has attracted increasing attention due to its advantages of low-carbon and energy-saving, nevertheless, greenhouse gas was still generated during its engineering applications process. Hence, it is vital to comprehensively understand the production characteristics and mechanisms of N2O and CH4 in anammox processes by responding to practical conditions including dissolved oxygen, temperature, and salinity. Results showed that N2O production increased by 192 %-358 %, while nitrogen removal efficiency (NRE) increased by 64.2 %-86.8 % with increasing temperature. The increased salinity inhibits 40.60 %-65.33 % N2O production with a decrease NRE of 7.85 %-18.2 %. CH4 production was the highest at 18-27 °C, reaching 3.07 ± 0.11-4.06 ± 0.16 mg·L-1, which were 1.59-2 and 1.29-1.38 times higher than that at 8-17 °C and 28-37 °C, respectively. Denitratisoma, Thauera, and Nitrosomonas were the main functional microbes for greenhouse gas production in anammox consortia. Notably, H2O2-induced intracellular Fenton reaction may be critical for the CH4 production in anammox consortia. This work provides valuable insights into achieving efficient nitrogen removal and minimizing carbon footprint in anammox systems and provides a theoretical basis for implementing the net-zero emission idea in wastewater treatment plants.
Collapse
Affiliation(s)
- Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Qiulin Yang
- Sichuan Development Environmental Science and Technology Research Institute Co., Ltd, Chengdu 610101, China; Sichuan Provincial Industrial Wastewater Pollution Control and Low Carbon Resource Utilization Engineering Technology Research Center, Chengdu 610101, China
| | - Lili Zhao
- Sichuan Development Environmental Science and Technology Research Institute Co., Ltd, Chengdu 610101, China; Sichuan Provincial Industrial Wastewater Pollution Control and Low Carbon Resource Utilization Engineering Technology Research Center, Chengdu 610101, China
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Tong Y, Liao X, He Y, Cui X, Wishart M, Zhao F, Liao Y, Zhao Y, Lv X, Xie J, Liu Y, Chen G, Hou L. Mitigating greenhouse gas emissions from municipal wastewater treatment in China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100341. [PMID: 38094258 PMCID: PMC10716752 DOI: 10.1016/j.ese.2023.100341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 06/01/2024]
Abstract
Municipal wastewater treatment plays an indispensable role in enhancing water quality by eliminating contaminants. While the process is vital, its environmental footprint, especially in terms of greenhouse gas (GHG) emissions, remains underexplored. Here we offer a comprehensive assessment of GHG emissions from wastewater treatment plants (WWTPs) across China. Our analyses reveal an estimated 1.54 (0.92-2.65) × 104 Gg release of GHGs (CO2-eq) in 2020, with a dominant contribution from N2O emissions and electricity consumption. We can foresee a 60-65% reduction potential in GHG emissions with promising advancements in wastewater treatment, such as cutting-edge biological techniques, intelligent wastewater strategies, and a shift towards renewable energy sources.
Collapse
Affiliation(s)
- Yindong Tong
- School of Ecology and Environment, Tibet University, Lhasa, 850012, China
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiawei Liao
- Bay Area International Business School, Beijing Normal University, Zhuhai, 519087, China
| | - Yanying He
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa, 850012, China
| | | | - Feng Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yulian Liao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuebin Lv
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiawen Xie
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Ecology and Environment, Tibet University, Lhasa, 850012, China
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Li'an Hou
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Guo K, Li D, Hao T, Teng L, Li S, Zeng H, Zhang J. Potential directions for future development of mainstream partial nitrification-anammox processes: Ammonia-oxidizing archaea as novel functional microorganisms providing nitrite. BIORESOURCE TECHNOLOGY 2024; 399:130605. [PMID: 38499200 DOI: 10.1016/j.biortech.2024.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The application of ammonia-oxidizing archaea (AOA)-based partial nitrification-anammox (PN-A) for mainstream wastewater treatment has attracted research interest because AOA can maintain higher activity in low-temperature environments and they have higher affinity for oxygen and ammonia-nitrogen compared with ammonia-oxidizing bacteria (AOB), thus facilitating stabilized nitrite production, deep removal of low-ammonia, and nitrite-oxidizing bacteria suppression. Moreover, the low affinity of AOA for ammonia makes them more tolerant to N-shock loading and more efficiently integrated with anaerobic ammonium oxidation (anammox). Based on the limitations of the AOB-based PN-A process, this review comprehensively summarizes the potential and significance of AOA for nitrite supply, then gives strategies and influencing factors for replacing AOB with AOA. Additionally, the methods and key influences on the coupling of AOA and anammox are explored. Finally, this review proposes four AOA-based oxygen- or ammonia-limited autotrophic nitritation/denitrification processes to address the low effluent quality and instability of mainstream PN-A processes.
Collapse
Affiliation(s)
- Kehuan Guo
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Luyao Teng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
He Y, Liu Y, Li X, Guo H, Zhu T, Liu Y. Polyvinyl Chloride Microplastics Facilitate Nitrous Oxide Production in Partial Nitritation Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1954-1965. [PMID: 38239129 DOI: 10.1021/acs.est.3c09280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.
Collapse
Affiliation(s)
- Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Liu Y, Liu Y, Zhao T, He Y, Zhu T, Chai H, Peng L. Smaller Aerobic Granules Significantly Reduce N 2O Production by Ammonia-Oxidizing Bacteria: Evidences from Biochemical and Isotopic Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:545-556. [PMID: 38111342 DOI: 10.1021/acs.est.3c06246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mitigation of nitrous oxide (N2O) is of primary significance to offset carbon footprints in aerobic granular sludge (AGS) systems. However, a significant knowledge gap still exists regarding the N2O production mechanism and its pathway contribution. To address this issue, the impact of varying granule sizes, dissolved oxygen (DO), and nitrite (NO2-) levels on N2O production by ammonia-oxidizing bacteria (AOB) during nitrification in AGS systems was comprehensively investigated. Biochemical and isotopic experiments revealed that increasing DO or decreasing NO2- levels reduced N2O emission factors (by 13.8 or 19.5%) and production rates (by 0.08 or 0.35 mg/g VSS/h) via weakening the role of the AOB denitrification pathway since increasing DO competed for more electrons required for AOB denitrification. Smaller granules (0.5 mm) preferred to diminish N2O production via enhancing the role of NH2OH pathway (i.e., 59.4-100% in the absence of NO2-), while larger granules (2.0 mm) induced conspicuously higher N2O production via the AOB denitrification pathway (approximately 100% at higher NO2- levels). Nitrifying AGS systems with a unified size of 0.5 mm achieved 42% N2O footprint reduction compared with the system with mixed sizes (0.5-2.0 mm) under optimal conditions (DO = 3.0 mg-O2/L and NO2- = 0 mg-N/L).
Collapse
Affiliation(s)
- Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| |
Collapse
|
8
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Zhu T, Ding J, Liu Y, Li X, Wang Z, Liu Y. The effect of organic sources on the electron distribution and N 2O emission in sulfur-driven autotrophic denitrification biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166126. [PMID: 37562622 DOI: 10.1016/j.scitotenv.2023.166126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SAD) is considered as an effective alternative to traditional heterotrophic denitrification (HD) due to its cheap, low sludge production and non-toxicity. Nitrous oxide (N2O) as an intermediate product inevitably was generated at the limited supply of electron donor or unbalanced electron distribution condition during the denitrification process. Recently, autotrophic denitrification biofilters were conclusively implemented for advanced nitrogen removal in wastewater treatment plant (WWTP). However, residual organic sources after wastewater treatment could affect the electron distribution among denitrifying reductases and few studies are known about this issue. In this study, several lab-scale biofilters packed with elemental sulfur slices were applied to explore the electron distribution characteristics of autotrophic denitrification through the combination of different nitrogen oxides (NOx). The results clearly delineated that the different combination of nitrogen oxides had a remarkable effect on the electron distribution. In any case, the electrons likely flow toward nitrate reductase (Nar) under a single nitrogen oxide combination, followed by nitrite reductase (Nir) and nitrous oxide reductase (Nos). The concurrent presence of multiple electron acceptors resulted in most electrons flowing toward Nar, and least toward Nos. Compared to traditional SAD, the reduction rate of nitrogen oxide in the sulfur-driven autotrophic denitrification with influent of organic source (OSAD) was greatly improved. The maximum value of the true specific rates of NO3- in OSAD process was 9.43 mg-N/g-VSS/h. It was increased by 8.26 folds higher than that in traditional SAD. The electrons were more easily distributed to Nos with the addition of sodium acetate, which further promoted the N2O reduction. This study will provide theoretical support for controlling N2O release in SAD biofilters.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiazeng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xufeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
10
|
Godfrey B, Li B, Gottshall E, Brysons S, Abrahamson B, Winkler M. Co-immobilization of AOA strains with anammox bacteria in three different synthetic bio-granules maintained under two substrate-level conditions. CHEMOSPHERE 2023; 342:140192. [PMID: 37722534 DOI: 10.1016/j.chemosphere.2023.140192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Hydrogel encapsulation of ammonium oxidizing archaea (AOA) along with anammox bacteria holds potential to enable mainstream partial nitritation (PN)-anammox process attributing to AOA's high affinity to ammonia and oxygen. This study explored the growth of AOA and anammox in hydrogel-based synthetic biogranules by testing two AOA strains, three types of hydrogel beads and two substrate levels, to identify the optimal combination favoring the concomitant growth of AOA and anammox. The AOA Nitrososphaera viennensis (AOA-NV) exhibited higher abundance (10-2.3±0.6 AOA/16S) than the AOA-DW (10-4.7±0.8 AOA/16S) during the entire experimental period. Amongst the three types of hydrogel beads, the PVA-SA-BaCl2 (140 days) and PVA-SA-H3BO3 beads (>180 days) exhibited better long-term structural stability than the PEGDMA-SA-CaCl2 beads. The PVA-SA-H3BO3 beads exhibited the best long-term stability and both the PVA/SA BaCl2 and PVA-SA-H3BO3 beads had comparable ability to retain AOA, anammox and the overall microbial community. Substrate conditions rather than the bead type primarily controlled the microbial community structure. Modest substrate concentrations (1 mM NH4+-N in the feed and 0.8 mg/L dissolved oxygen (DO) in the reactor during aeration phase) followed by low substrate conditions (0.1 mM NH4+-N and 0.2 mg DO/L) both supported the growth of AOA and anammox, while the low substrate condition also suppressed the growth of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), with AOA /AOB and anammox/NOB ratio of 0.7 and 0.4 at moderate substrate condition and 16.5 and 2.6 at low substrate condition.
Collapse
Affiliation(s)
- Bruce Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA.
| | - Ekaterina Gottshall
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Samuel Brysons
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Britt Abrahamson
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Mari Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Zhao Y, Duan H, Erler D, Yuan Z, Ye L. Decoupling the simultaneous effects of NO 2-, pH and free nitrous acid on N 2O and NO production from enriched nitrifying activated sludge. WATER RESEARCH 2023; 245:120609. [PMID: 37713792 DOI: 10.1016/j.watres.2023.120609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
In the pursuit of energy and carbon neutrality, nitrogen removal technologies have been developed featuring nitrite (NO2-) accumulation. However, high NO2- accumulations are often associated with stimulated greenhouse gas (i.e., nitrous oxide, N2O) emissions. Furthermore, the coexistence of free nitrous acid (FNA) formed by NO2- and proton (pH) makes the consequence of NO2- accumulation on N2O emissions complicated. The concurrent three factors, NO2-, pH and FNA may play different roles on N2O and nitric oxide (NO) emissions simultaneously, which has not been systematically studied. This study aims to decouple the effects of NO2- (0-200 mg N/L), pH (6.5-8) and FNA (0-0.15 mg N/L) on the N2O and NO production rates and the production pathways by ammonia oxidizing bacteria (AOB), with the use of a series of precisely executed batch tests and isotope site-preference analysis. Results suggested the dominant factors affecting the N2O production rate were NO2- and FNA concentrations, while pH alone played a relatively insignificant role. The most influential factor shifted from NO2- to FNA as FNA concentrations increased from 0 to 0.15 mg N/L. At concentrations below 0.0045 mg HNO2-N/L, nitrite rather than FNA played a significant role stimulating N2O production at elevated nitrite concentrations. The inhibition effect of FNA emerged with further increase of FNA between 0.0045-0.015 mg HNO2-N/L, weakening the promoting effect of increased nitrite. While at concentrations above 0.015 mg HNO2-N/L, FNA inhibited N2O production especially from nitrifier denitrification pathway with the level of inhibition linearly correlated with the FNA concentration. pH and the nitrite concentration regulated the production pathways, with elevated pH promoting the nitrifier nitrification pathway, while elevated NO2- concentrations promoting the nitrifier denitrification pathway. In contrast to N2O, NO emission was less susceptible to FNA at concentrations up to 0.015 mg N/L but was stimulated by increasing NO2- concentrations. This study, for the first time, distinguished the effects of pH, NO2- and FNA on N2O and NO production, thereby providing support to the design and operation of novel nitrogen removal systems with NO2- accumulation.
Collapse
Affiliation(s)
- Yingfen Zhao
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia; The Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Dirk Erler
- Centre for Coastal Biogeochemistry, School of Environmental Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
12
|
He Y, Liu Y, Li X, Zhu T, Liu Y. Unveiling the roles of biofilm in reducing N 2O emission in a nitrifying integrated fixed-film activated sludge (IFAS) system. WATER RESEARCH 2023; 243:120326. [PMID: 37454457 DOI: 10.1016/j.watres.2023.120326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Biofilm process such as integrated fixed-film activated sludge (IFAS) system has been preliminarily found to produce less nitrous oxide (N2O) than suspended sludge system. However, the N2O emission behaviors and underlying N2O mitigation mechanism in such hybrid system remain unclear. This study therefore aims to fully unveil the roles of biofilm in reducing N2O emission in a nitrifying IFAS system with the aid of some advanced technologies such as N2O microsensor and site-preference analysis. It was found that ammonia oxidation occurred mostly in the sludge flocs (˃ 86%) and biofilm could reduce N2O emission by 43.77% in a typical operating cycle. Biofilm not only reduced nitrite accumulation in nitrification process, inhibiting N2O production via nitrifier denitrification pathway, but also served as a N2O sink, promoting the reduction of N2O via endogenous denitrification. As a result, N2O emissions from the IFAS system were 50%-83% lower than those from the solo sludge flocs. Further, more N2O emission was reduced in the presence of biofilm with decreasing the dissolved oxygen level in the range of 0.5-3.0 mg O2/L. Microbial community and key enzyme analyses revealed that biofilm had relatively high microbial diversity and unique enzyme composition, providing a reasonable explanation for the changed contributions of different N2O production pathways and reduced N2O emission.
Collapse
Affiliation(s)
- Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
13
|
Li B, Godfrey BJ, RedCorn R, Candry P, Abrahamson B, Wang Z, Goel R, Winkler MKH. Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox. WATER RESEARCH 2023; 242:120303. [PMID: 37419028 DOI: 10.1016/j.watres.2023.120303] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Application of partial nitritation (PN)-anammox to mainstream wastewater treatment faces challenges in low water temperature and low ammonium strength. In this study, a continuous flow PN-anammox reactor with hydrogel-encapsulated comammox and anammox was designed and operated for nitrogen removal from mainstream wastewater with low temperature. Long-term operation with synthetic and real wastewater as the feed demonstrated nearly complete ammonium and total inorganic nitrogen (TIN) removal by the reactor at temperatures as low as 10 °C. A significantly decreased nitrogen removal performance and biomass activity was observed in the reactor at 4 °C before a selective heating strategy was employed. A novel heating technology using radiation to heat carbon black co-encapsulated in the hydrogel matrix with biomass was used to selectively heat biomass but not water in the treatment system. This selective heating technology enabled nearly complete ammonium removal and 89.4 ± 4.3 % TIN removal at influent temperature of 4 °C and reactor temperature 5 °C. Activity tests suggested selective heating brought the biomass activity at influent temperatures of 4 °C and reactor temperature 5 °C to a level comparable to that at 10 °C. Comammox and anammox were consistently present in the system and spatially organized in the hydrogel beads as revealed by qPCR and fluorescence in-situ hybridization (FISH). The abundance of comammox largely decreased by 3 orders of magnitude during the operation at 4 °C, and rapidly recovered after the application of selective heating. The anammox-comammox technology tested in this study essentially enabled mainstream shortcut nitrogen removal, and the selective heating ensured good performance of the technology at temperature as low as 5 °C.
Collapse
Affiliation(s)
- Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| | - Bruce J Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Raymond RedCorn
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Pieter Candry
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Britt Abrahamson
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Zhiwu Wang
- Virginia Polytechnic Institute and State University, Department of Biological Systems Engineering, 1230 Washington St. SW, Blacksburg VA 24061, VA 20147, USA
| | - Ramesh Goel
- The University of Utah, Department of Civil & Environmental Engineering, 110 S. Central Campus Drive, 2000MCE, Salt Lake City, UT 84112, USA
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Guo H, Liu S, Wang Y, Wang Y, Hou J, Zhu T, Liu Y. Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131138. [PMID: 36917912 DOI: 10.1016/j.jhazmat.2023.131138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Although the biocidal effect of calcium peroxide (CaO2) has attracted increasing attention in wastewater and sludge management, its potential in the reduction of sulfide and methane from sewer is not tapped. This study aims to fill this gap through the long-term operated sewer reactors. Results showed one-time dose of 0.2% (w/v) CaO2 with 12-h exposure decreased the average sulfide and methane production by 80% during one week. The electron paramagnetic resonance and free radical quenching tests indicated free radicals from CaO2 decomposing posed a major contribution on sewer biofilms (•OH>•O2->alkali). Mechanistic analysis revealed extracellular polymeric matrix breakdown (e.g., protein secondary structure) and cell membrane damage were caused by the increased lipid peroxidation of cells and exacerbated intracellular reactive oxygen species under CaO2 stress. Moreover, the intracellular metabolic pathways, such as electrons provision and transfer, as well as pivotal enzymatic activities (e.g., APS reductase, sulfite reductase and coenzymes F420) were significantly impaired. RT-qPCR analysis unveiled the absolute abundances of dsrA and mcrA were decreased by 7.53-40.37% and 67.00-74.85%, respectively. Although this study broadens the application scope of CaO2 and provides in-depth understanding of advanced oxidation-based technology in sewer management, the pipe scale risk due to the release of calcium ions warrants further investigation.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Hu Z, Hu S, Hong PY, Zhang X, Prodanovic V, Zhang K, Ye L, Deletic A, Yuan Z, Zheng M. Impact of electrochemically generated iron on the performance of an anaerobic wastewater treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162628. [PMID: 36889383 DOI: 10.1016/j.scitotenv.2023.162628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic treatment of domestic wastewater has the advantages of lower biomass yield, lower energy demand and higher energy recover over the conventional aerobic treatment process. However, the anaerobic process has the inherent issues of excessive phosphate and sulfide in effluent and superfluous H2S and CO2 in biogas. An electrochemical method allowing for in-situ generation of Fe2+ in the anode and hydroxide ion (OH-) and H2 in the cathode was proposed to overcome the challenges simultaneously. The effect of electrochemically generated iron (e‑iron) on the performance of anaerobic wastewater treatment process was explored with four different dosages in this work. The results showed that compared to control, the experimental system displayed an increase of 13.4-28.4 % in COD removal efficiency, 12.0-21.3 % in CH4 production rate, 79.8-98.5 % in dissolved sulfide reduction, 26.0-96.0 % in phosphate removal efficiency, depending on the e‑iron dosage between 40 and 200 mg Fe/L. Dosing of the e‑iron significantly upgraded the quality of produced biogas, showing a much lower CO2 and H2S contents in biogas in experimental reactor than that in control reactor. The results thus demonstrated that e‑iron can significantly improve the performance of anaerobic wastewater treatment process, bringing multiple benefits with the increase of its dosage regarding effluent and biogas quality.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Pei-Ying Hong
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, SA 23955, Saudi Arabia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Veljko Prodanovic
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ana Deletic
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia; School of Civil and Environmental Engineering, Engineering Faculty, Queensland University of Technology, QLD 4001, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Zheng M, Li H, Duan H, Liu T, Wang Z, Zhao J, Hu Z, Watts S, Meng J, Liu P, Rattier M, Larsen E, Guo J, Dwyer J, Akker BVD, Lloyd J, Hu S, Yuan Z. One-year stable pilot-scale operation demonstrates high flexibility of mainstream anammox application. WATER RESEARCH X 2023; 19:100166. [PMID: 36685722 PMCID: PMC9845764 DOI: 10.1016/j.wroa.2023.100166] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/05/2023]
Abstract
Mainstream nitrogen removal via anammox is widely recognized as a promising wastewater treatment process. However, its application is challenging at large scale due to unstable suppression of nitrite-oxidizing bacteria (NOB). In this study, a pilot-scale mainstream anammox process was implemented in an Integrated Fixed-film Activated Sludge (IFAS) configuration. Stable operation with robust NOB suppression was maintained for over one year. This was achieved through integration of three key control strategies: i) low dissolved oxygen (DO = 0.4 ± 0.2 mg O2/L), ii) regular free nitrous acid (FNA)-based sludge treatment, and iii) residual ammonium concentration control (NH4 + with a setpoint of ∼8 mg N/L). Activity tests and FISH demonstrated that NOB barely survived in sludge flocs and were inhibited in biofilms. Despite receiving organic-deficient wastewater from a pilot-scale High-Rate Activated Sludge (HRAS) system as the feed, the system maintained a stable effluent total nitrogen concentration mostly below 10 mg N/L, which was attributed to the successful retention of anammox bacteria. This study successfully demonstrated large-scale long-term mainstream anammox application and generated new practical knowledge for NOB control and anammox retention.
Collapse
Affiliation(s)
- Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding authors.
| | - Huijuan Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shane Watts
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peng Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Maxime Rattier
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Eloise Larsen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jason Dwyer
- Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Ben Van Den Akker
- South Australian Water Corporation, 250 Victoria Square, Adelaide SA 5000, Australia
| | - James Lloyd
- Melbourne Water, 990 La Trobe St, Docklands, VIC, 3000, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding authors.
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Corresponding authors.
| |
Collapse
|
17
|
Cao S, Koch K, Duan H, Wells GF, Ye L, Zhao Y, Du R. In a quest for high-efficiency mainstream partial nitritation-anammox (PN/A) implementation: One-stage or two-stage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163540. [PMID: 37086997 DOI: 10.1016/j.scitotenv.2023.163540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Partial nitritation-anammox (PN/A) process is known as an energy-efficient technology for wastewater nitrogen removal, which possesses a great potential to bring wastewater treatment plants close to energy neutrality with reduced carbon footprint. To achieve this goal, various PN/A processes implemented in a single reactor configuration (one-stage system) or two separately dedicated reactors configurations (two-stage system) were explored over the past decades. Nevertheless, large-scale implementation of these PN/A processes for low-strength municipal wastewater treatment has a long way to go owing to the low efficiency and effectiveness in nitrogen removal. In this work, we provided a comprehensive analysis of one-stage and two-stage PN/A processes with a focus on evaluating their engineering application potential towards mainstream implementation. The difficulty for nitrite-oxidizing bacteria (NOB) out-selection was revealed as the critical operational challenge to achieve the desired effluent quality. Additionally, the operational strategies of low oxygen commonly adopted in one-stage systems for NOB suppression and facilitating anammox bacteria growth results in a low nitrogen removal rate (NRR). Introducing denitrification into anammox system was found to be necessary to improve the nitrogen removal efficiency (NRE) by reducing the produced nitrate with in-situ utilizing the organics from wastewater itself. However, this may lead to part of organics oxidized with additional oxygen consumed in one-stage system, further compromising the NRR. By applying a relatively high dissolved oxygen in PN reactor with residual ammonium control, and followed by a granules-based anammox reactor feeding with a small portion of raw municipal wastewater, it appeared that two-stage system could achieve a good effluent quality as well as a high NRR. In contrast to the widely studied one-stage system, this work provided a unique perspective that more effort should be devoted to developing a two-stage PN/A process to evaluate its application potential of high efficiency and economic benefits towards mainstream implementation.
Collapse
Affiliation(s)
- Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
18
|
Unveiling the effects of soluble starch, ethanol, and sodium acetate on the interactions of functional microorganisms and nitrogen removal in a partial nitritation and anammox biofilm system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Wang X, Yang H, Wang J. Gel-immobilized partial nitritation/anammox achieves reliable nitrogen removal at different concentrations of nitrogen and reactivation processes. BIORESOURCE TECHNOLOGY 2023; 370:128561. [PMID: 36587771 DOI: 10.1016/j.biortech.2022.128561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
A two-stage partial nitritation/anammox process based on microbial encapsulation (PN/A-E) was established. The nitrogen removal characteristics of PN/A-E under high and low ammonia nitrogen and after reactivation following a long-term shutdown were comprehensively investigated and compared with anammox granular sludge (AnGS). The stable PN process did not depend on high ammonia nitrogen, and the nitrite accumulation rate reached 95.2 ± 0.7 %. The overall nitrogen removal rate of encapsulated anammox bacteria was twice that of the AnGS, and it was more tolerant to external interference. Moreover, PN/A-E showed good reactivation performance, and the total nitrogen in the effluent was 10.0 ± 1.4 mg·L-1 when the final hydraulic retention time was 2.18 h. The immobilized fillers support an increase in ammonia-oxidizing bacteria under restricted conditions and were more conducive to the dominance of functional bacteria and the stability of microbial community under low ammonia nitrogen. This study provides a positive method to achieve a reliable PN/A.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - JiaWei Wang
- Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China
| |
Collapse
|
20
|
Yue X, You A, Liu Y, Lai M, Zhang K. Low-concentration methanol effect on the microorganisms, nitrogen removal, and recovery of the completely autotrophic nitrogen removal over nitrite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:130-143. [PMID: 36640028 DOI: 10.2166/wst.2022.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Methanol has a significant effect on the performance of the completely autotrophic nitrogen removal over the nitrite (CANON) process. In this research, the effect of low-concentration methanol on the functional microorganisms and nitrogen removal and recovery in the CANON system is investigated. The result shows that the anaerobic ammonium-oxidizing bacteria (AnAOB) was suppressed with low-concentration methanol addition, and the phylum Planctomycetes was hidden. The genus Candidatus Brocadia was restrained, and the relative abundances reduced from 25.5 to 15.0% in the upper biofilm and from 20.3 to 14.3% in the bottom biofilm, respectively. However, low-concentration methanol promoted the nitrifying oxidizing bacteria (NOB) activity. This phenomenon reduced the average ammonium nitrogen removal rate from 95.0 to 70.7%, and the average total nitrogen removal rate decreased from 81.3 to 43.6%, respectively. The results demonstrated that the low-concentration methanol as an organic carbon matter harmed the CANON process. Fortunately, the CANON system had an excellent self-healing ability when the methanol was stopped, with the average ammonium nitrogen removal rate and total nitrogen removal rate returning to 95.5 and 80.9%, respectively. This research supplies a reference for practical engineering design and application by improving the understanding of the effects of low-concentration methanol on CANON process performance.
Collapse
Affiliation(s)
- Xiu Yue
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Ao You
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Yang Liu
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Mincheng Lai
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Kun Zhang
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| |
Collapse
|
21
|
Zhang L, Jiang L, Zhang J, Li J, Peng Y. Enhancing nitrogen removal through directly integrating anammox into mainstream wastewater treatment: Advantageous, issues and future study. BIORESOURCE TECHNOLOGY 2022; 362:127827. [PMID: 36029988 DOI: 10.1016/j.biortech.2022.127827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has great potential to be applied to the process of nitrogen removal from mainstream wastewater. However, directly applying complete anammox to the mainstream is typically hindered by low temperatures, a low ammonia concentration, and high organic matter concentrations. Directly integrating anammox into mainstream treatment by enhancing the in-situ enrichment of anammox bacteria in wastewater treatment plants (WWTPs) could effectively improve the nitrogen removal efficiency and reduce the treatment cost. A certain anammox bacteria abundance in full-scale WWTPs provides the feasibility of directly integrating anammox into mainstream treatment and realizing partial mainstream anammox. The technical development status of partial anammox and the mechanisms of achieving partial mainstream anammox by aeration and organic control are summarized. This review provides an enhanced understanding of this novel technical route of partial mainstream anammox treatment for improving the quality, performance, and prospects for this technology to be used in upgrading WWTPs.
Collapse
Affiliation(s)
- Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ling Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiangtao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|