1
|
Zhang Y, Lu X, Yu S, Gu H, Fei X, Pan T, Li L, Ding Y, Ni M, Pan Y. Study on the mechanisms of efficient phosphorus recovery by a pilot-scale biofilm sequencing batch reactor under low carbon demand. ENVIRONMENTAL RESEARCH 2025; 273:121204. [PMID: 40020861 DOI: 10.1016/j.envres.2025.121204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
To study the mechanism of a novel pilot-scale biofilm sequencing batch reactor (PS-BSBR) for efficient phosphorus recovery under low carbon demand. The phosphate uptake/release performance and carbon source utilization efficiency of PS-BSBR and a typical enhanced biological phosphate removal (EBPR) -A2O process were compared, and the detection methods of different phosphorus forms were improved. The results showed that phosphate uptake/release content of PS-BSBR were 3.07 times and 4.47 times of that of A2O process under high carbon source utilization efficiency, respectively. The PS-BSBR mainly used inorganic phosphorus (IP) in the form of non-apatite inorganic phosphorus (NAIP) in EPS (85-90%), which was dependent on the adsorption of biologically induced extracellular polymers (EPS). The A2O process was mainly based on the IP in the form of NAIP (60-70%) in the cell for phosphate uptake and release, that was, relying on the biological phosphorus metabolism in the cell of polyphosphate-accumulating organisms (PAOs). Macroomics sequencing revealed that PS-BSBR had a variety of PAOs and a high-abundance glycogen-accumulating organisms (GAOs). By up-regulating the expression of key genes related to cellular phosphorus metabolism and EPS secretion, PS-BSBR promoted the phosphorus metabolism of PAOs cells and the biologically induced phosphate adsorption and desorption, which were dominated by the synthesis and decomposition of EPS. Therefore, the phosphorus absorption and release performance of PS-BSBR process was significantly better than that of A2O process. This study could provide theoretical support and regulatory guidance for the application of PS-BSBR process in sewage phosphorus recovery under the consumption of low carbon sources.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xumeng Lu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shengqi Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huijing Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiangyu Fei
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianyu Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanyan Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
2
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2025; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
3
|
Ciftcioglu-Gozuacik B, Ulutug FC, Denizli A, Dizge N, Karagunduz A, Keskinler B. Simultaneous production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from recovered volatile fatty acid with treatment of leachate by Pilot-Scale Mechanical Vapor Recompression. BIORESOURCE TECHNOLOGY 2023; 388:129743. [PMID: 37716573 DOI: 10.1016/j.biortech.2023.129743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Serious global problems faced due to many petroleum-based materials in the last century, which is called the plastic age, constitute the main motivation of this research. Considering wastewater treatment from this perspective, both the recovery of organic acids from wastewater and their conversion into bioplastics are extremely important in terms of reducing petroleum dependency. In this study, while the treatment of landfill leachate was provided with biological process integrated into Mechanical Vapor Recompression (MVR), simultaneously PHBV production was carried out with 84.9% recovered VFA as carbon source. The effects of C/N/P ratio and feeding regime on PHBV storage were investigated by Cupriavidus necator. PHBV storage of 96% (g PHBV/g DCW) was maximized by 2-stage feeding and nitrogen restriction. The ratio of 3HV to 3HB of PHBV was 45%. In addition, extracted PHBV was compared with standard PHA in terms of thermal and chemical properties with FTIR, XRD, TGA and DSC analyses.
Collapse
Affiliation(s)
| | - Fatma-Cansu Ulutug
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Aslı Denizli
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Gebze Technical University, Kocaeli 41400, Turkey.
| |
Collapse
|
4
|
Kadoya R, Soga H, Matsuda M, Sato M, Taguchi S. Bacterial Population Changes during the Degradation Process of a Lactate (LA)-Enriched Biodegradable Polymer in River Water: LA-Cluster Preferable Bacterial Consortium. Polymers (Basel) 2023; 15:4111. [PMID: 37896354 PMCID: PMC10610160 DOI: 10.3390/polym15204111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The lactate-based polyester poly[lactate (LA)-co-3-hydroxybutyrate (3HB)], termed LAHB, is a highly transparent and flexible bio-based polymeric material. There are many unknowns regarding its degradation process in riverine environments, especially the changes in bacterial flora that might result from its degradation and the identities of any LAHB-degrading bacteria. LAHB were immersed in the river water samples (A and B), and LAHB degradation was observed in terms of the weight change of the polymer and the microscopic changes on the polymer surfaces. A metagenomic analysis of microorganisms was conducted to determine the effect of LAHB degradation on the aquatic environment. The bacterial flora obtained from beta diversity analysis differed between the two river samples. The river A water sample showed the simultaneous degradation of LA and 3HB even though the copolymer was LA-enriched, suggesting preferable hydrolysis of the LA-enriched segments. In contrast, only 3HB degraded for the LAHB in the river B water sample. The linear discriminant analysis effect size (LEfSe) analysis revealed 14 bacteria that were significantly increased in the river A water sample during LAHB degradation, suggesting that these bacteria preferentially degraded and assimilated LA-clustering polymers. Our metagenomic analysis provides useful insights into the dynamic changes in microbial communities and LA-clustering polymer-degrading bacteria.
Collapse
Affiliation(s)
- Ryosuke Kadoya
- Department of Food and Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka Motomachi, Chikusa-ku, Nagoya 464-8662, Aichi, Japan; (H.S.); (M.M.)
| | - Hitomi Soga
- Department of Food and Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka Motomachi, Chikusa-ku, Nagoya 464-8662, Aichi, Japan; (H.S.); (M.M.)
| | - Miki Matsuda
- Department of Food and Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka Motomachi, Chikusa-ku, Nagoya 464-8662, Aichi, Japan; (H.S.); (M.M.)
| | - Michio Sato
- Microbial Genetics Laboratory, Department of Agricultural Chemistry, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawsaki 214-8571, Kanagawa, Japan;
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Hyogo, Japan;
| |
Collapse
|
5
|
Brison A, Rossi P, Derlon N. Single CSTR can be as effective as an SBR in selecting PHA-storing biomass from municipal wastewater-derived feedstock. WATER RESEARCH X 2023; 18:100165. [PMID: 37250287 PMCID: PMC10214291 DOI: 10.1016/j.wroa.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A key step for the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactors (SBR). A major advancement would be to perform such selection in continuous reactors to facilitate the full-scale implementation of PHA production from municipal wastewater (MWW)-derived feedstock. The present study therefore investigates to what extent a simple continuous-flow stirred-tank reactor (CSTR) represents a relevant alternative to anSBR. To this end, we operated two selection reactors (CSTR vs. SBR) on filtered primary sludge fermentate while performing a detailed analysis of the microbial communities, and monitoring PHA-storage over long-term (∼150 days) and during accumulation batches. Our study demonstrates that a simple CSTR is as effective as an SBR in selecting biomass with high PHA-storage capacity (up to 0.65 gPHA gVSS-1) while being 50% more efficient in terms of substrate to biomass conversion yields. We also show that such selection can occur on VFA-rich feedstock containing nitrogen (N) and phosphorus (P) in excess, whereas previously, selection of PHA-storing organisms in a single CSTR has only been studied under P limitation. We further found that microbial competition was mostly affected by nutrient availability (N and P) rather than by the reactor operation mode (CSTR vs. SBR). Similar microbial communities therefore developed in both selection reactors, while microbial communities were very different depending on N availability. Rhodobacteraceae gen. were most abundant when growth conditions were stable and N-limited, whereas dynamic N- (and P-) excess conditions favoured the selection of the known PHA-storer Comamonas, and led to the highest observed PHA-storage capacity. Overall, we demonstrate that biomass with high storage capacity can be selected in a simple CSTR on a wider range of feedstock than just P-limited ones.
Collapse
Affiliation(s)
- Antoine Brison
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|