1
|
Wang K, Flury M, Kuzyakov Y, Zhang H, Zhu W, Jiang R. Aluminum and microplastic release from reflective agricultural films disrupt microbial communities and functions in soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137891. [PMID: 40081051 DOI: 10.1016/j.jhazmat.2025.137891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Reflective agricultural films are widely used in vegetable production and orchards to repel pests, accelerate fruit ripening, and boost yields. These films, composed of a plastic base metallized with aluminum (Al), degrade over time in soil, releasing Al and microplastics. This study investigated the aging and weathering of Al-coated reflective films (polyethylene terephthalate, PET-based) under UV radiation, simulated rainfall, and soil burial for up to 120 days, assessing the effects of released Al and microplastics on soil chemistry and microbial communities. Weathering was confirmed by the formation of C-O/CO functional groups, an increasing carbonyl index, and the oxidation of Al to Al₂O₃, as shown by Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Faster Al-coated shedding and PET oxidation were observed in the soil environment. Microplastics (0.5 % w/w) from the films reduced soil micronutrient availability (Fe, Mn, Cu), suppressed functional genes involved in carbon, nitrogen, and phosphorus cycling, and shifted microbial communities towards oligotrophic bacteria enrichment (e.g., RB41, Candidatus_Udaeobacter, Gemmatimonadetes, and Chloroflexi) while reducing copiotrophic bacteria (e.g., Sphingomonas, Ellin6067, Dongia, Puia, and Flavisolibacter). Therefore, these findings highlight that reflective film weathering strongly alters soil nutrient content and microbial community composition, with potential implications for soil health and agricultural sustainability.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164 and Puyallup, WA 98371, United States
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, Georg-August, University of Göttingen, Göttingen 37077, Germany; Bioeconomy Research Institute, Vytautas Magnus University, Agriculture Academy, Studentu 11, LT-53361 Akademija, Kaunas Reg., Lithuania
| | - Hao Zhang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zhu
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Wu X, Liu Y, Jin Y, Wang Y, Yuan M, He K, Zhang X, Chen Q, Xue Z, Wang R, Li X. Insights into the photoaging behavior of biodegradable and nondegradable microplastics: Spectroscopic and molecular characteristics of dissolved organic matter release. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136651. [PMID: 39603122 DOI: 10.1016/j.jhazmat.2024.136651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Biodegradable plastics are increasingly used as a potential alternative to nondegradable plastics to tackle plastic pollution. However, recent studies have raised concerns about the ecological risks posed by biodegradable microplastics (MPs), which mainly focused on the risks generated by MPs themselves, neglecting the risks associated with the MPs derived dissolved organic matter (DOM). Therefore, this study selected polylactic acid (PLA) MPs with 50 µm particle size and polystyrene (PS) MPs with 50 µm and 500 nm particle sizes as representatives of biodegradable and nondegradable MPs, respectively, to comparative investigate their photoaging behavior, particularly the differences in DOM release. The results showed that both PLA-MPs and PS-MPs exhibited considerable photoaging under ultraviolet irradiation, accompanied by different color changes (PS turned yellow and PLA turned grayish brown), which were attributed to the different functional groups produced on their surfaces after photoaging (PS-MPs: CO, PLA-MPs: terminal -COOH). Additionally, excitation-emission matrix characterization combined with parallel factor analysis revealed that 50 µm PLA-MPs (16-23 %) released more protein-like low molecular weight DOM during photoaging than that of both 50 µm PS-MPs (7-13 %) and 500 nm PS-MPs (8-18 %). Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) further confirmed that PLA-MPs (41.4 %) produced more unstable DOM easily utilized by microorganisms than that of 50 µm PS-MPs (6.3 %) and 500 nm PS-MPs (7.9 %). These results together suggested that biodegradable MPs with small particle size derived DOM may have a greater impact on microbial activity and carbon cycle than that of nondegradable MPs.
Collapse
Affiliation(s)
- Xiaoyang Wu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yifan Liu
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yaofeng Jin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Mengjie Yuan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Kunyu He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyan Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qin Chen
- Northwest Land and Resource Research Center, Shaanxi Normal University, Xi'an 710119, China
| | - Zhijing Xue
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyun Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China.
| |
Collapse
|
3
|
Liu S, Chen B, Wang K, Wang J, Wang K, Suo Y, Yang X, Zhu Y, Zhang J, Lu M, Liu Y. Unveiling the impact of biodegradable polylactic acid microplastics on meadow soil health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:45. [PMID: 39776269 DOI: 10.1007/s10653-025-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored. This study investigates the impacts of PLA-MPs of varying particle sizes and concentrations on soil physicochemical properties, enzyme activities, and microbial communities through a 60-day incubation experiment. PLA-MPs increased the pH, soil organic matter, total nitrogen (TN) and available potassium (AK) content, as well as enhanced the activities of superoxide dismutase (S-SOD), peroxidase (S-POD), soil catalase (S-CAT), β-glucosidase (S-β-GC) and urease (S-UE) activities. Conversely, a decrease in alkaline phosphatase (S-ALP) activity was observed. The influence of PLA-MPs on soil physicochemical properties was more pronounced with larger particle sizes, whereas smaller particles had a greater effect on enzyme activities. Additionally, PLA-MPs led to an increase in the abundance of Acidobacteriota, Chloroflexi, and Gemmatimonadota, while the abundance of Proteobacteria, Actinobacteriota, and Patescibacteria declined. Mantel test analysis showed that changes in microbial community composition affected soil properties such as pH, AK, S-UE and S-β-GC. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis demonstrated that PLA-MPs modify bacterial metabolic pathways. Our results suggest that particle size and concentration of PLA-MPs differentially affect soil nutrients and microbial community structure and function, with more significant effects observed at larger particle sizes and higher concentrations.
Collapse
Affiliation(s)
- Shuming Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China
| | - Binglin Chen
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jinghuizi Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Kaili Wang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yan Suo
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Xiaoyu Yang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yaokun Zhu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jiaxing Zhang
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Mengchu Lu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China
| | - Yunqing Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China.
- Institute of Resources and Ecology, Yili Normal University, Yining, 835000, China.
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yining, 835000, China.
| |
Collapse
|
4
|
Han L, Chen L, Feng Y, Kuzyakov Y, Chen Q, Zhang S, Chao L, Cai Y, Ma C, Sun K, Rillig MC. Microplastics alter soil structure and microbial community composition. ENVIRONMENT INTERNATIONAL 2024; 185:108508. [PMID: 38377723 DOI: 10.1016/j.envint.2024.108508] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 μm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.
Collapse
Affiliation(s)
- Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Liying Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Qi'ang Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sibo Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Liang Chao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Ke Sun
- State Key Laboratory of Water Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
5
|
Boyer TH, Gernjak W. Research stories along the urban water cycle. WATER RESEARCH X 2024; 22:100218. [PMID: 38516567 PMCID: PMC10955406 DOI: 10.1016/j.wroa.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Treavor H. Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
6
|
Wang L, Zhou JC, Li ZH, Zhang X, Leung KMY, Yuan L, Sheng GP. Facet-Specific Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Hematite Nanoparticles in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21835-21845. [PMID: 38085064 DOI: 10.1021/acs.est.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Kang E, Lee W, Lee H. Comprehensive Understanding of Self-Propelled Janus Pt/Fe 2O 3 Micromotor Dynamics: Impact of Size, Morphology, and Surface Structure. J Phys Chem Lett 2023; 14:9811-9818. [PMID: 37889127 DOI: 10.1021/acs.jpclett.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing use of plastics has led to the accumulation of plastic waste in the oceans, resulting in significant global environmental challenges associated with microplastic pollution. Micromotors, capable of capturing and removing microplastics from aquatic systems, have emerged as a promising solution to addressing this problem. This research aims to analyze the factors affecting the speed of micromotors, including size, morphology, and surface structure, while elucidating the underlying mechanisms governing micromotor propulsion to develop efficient and ecofriendly micromotors. In this study, we systematically manipulate various parameters by modifying the synthesis method of hematite-based micromotors, subsequently comparing their propulsion speeds and uncovering the precise role of these parameters in determining the micromotor performance. Furthermore, we shed light on the intricate interplay between drag force and propulsive force, demonstrating how these forces vary under different H2O2 conditions. These findings provide valuable insights into the design of efficient micromotors tailored for dynamic aquatic environments.
Collapse
Affiliation(s)
- Eunbi Kang
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wanhee Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|