1
|
Qi Z, Deng W, Hu L, Zhou Y, Wang X, Zhang Y, Yu Y. Legacy and emerging organophosphate flame retardants (OPFRs) in water and sediment from the Pearl River Delta to the adjacent coastal waters of the South China Sea: Spatioseasonal variations, flux estimation and ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125633. [PMID: 39755357 DOI: 10.1016/j.envpol.2025.125633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD. The results indicated that all OPFRs we targeted were detectable in the water samples; The sum concentration of OPFRs in the water ranged from 17.35 ng/L to 673.30 ng/L, with an average level of 215.11 ng/L; In sediments it ranged from 5.68 ng/g to 802.46 ng/g dry weight (dw). Tris(2-chloroisopropyl) phosphate (TCPP, 99.58 ng/L) and Bisphenol A diphenyl phosphate (BDP, 51.09 ng/g dw) were the most abundant OPFRs in the surface water and sediment, respectively. Notably, although Tetrekis (2-chlorethyl) dichloroisopentyl-diphosphate (V6) has only been used in recent years, its relatively high concentrations and proportions, both in water and sediment samples, demonstrate its now widespread occurrence in the PRD. The estimated annual flux of ΣOPFRs from the eight estuaries to the South China Sea was 45.04 t/y. The four estuaries (Humen, Modaomen, Hengmen and Honqimen) contribute 80% of the mass loading. Triphenyl phosphate (TPHP) and Tris (2-chloroethyl) phosphate (TCEP) in water posed relatively higher ecological risks to algae, daphnia, and fish than other OPFRs. Our results provide scientific support for continuing monitoring and control of OPFR pollution in the PRD.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weicong Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanlan Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yinfeng Zhou
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xutao Wang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, MEE, Guangzhou, 510610, China
| | - Yafeng Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, MEE, Guangzhou, 510610, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|