1
|
Lavoro A, Ricci D, Gattuso G, Longo F, Spoto G, Vitale ACV, Giuliana MC, Falzone L, Libra M, Candido S. Recent advances on gene-related DNA methylation in cancer diagnosis, prognosis, and treatment: a clinical perspective. Clin Epigenetics 2025; 17:76. [PMID: 40325471 PMCID: PMC12054201 DOI: 10.1186/s13148-025-01884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/13/2025] [Indexed: 05/07/2025] Open
Abstract
Recent advances in screening programs and the development of innovative therapeutic strategies have significantly improved the clinical outcomes of cancer patients. However, many patients still experience treatment failure, primarily due to inherent or acquired drug resistance mechanisms. This challenge underscores the urgent need for novel therapeutic targets for the effective treatment of malignancies, as well as cancer-specific biomarkers to enhance early diagnosis and guide interventions. Epigenetic mechanisms, including DNA methylation, have recently garnered growing interest as key regulators of gene expression under both physiological and pathological conditions. Although epigenetic dysregulations are reliable tumor hallmarks, DNA methylation is still not routinely integrated into clinical practice, highlighting the need for further research to translate preclinical findings from the bench to the bedside. On these bases, the present review aims to illustrate the state of the art regarding the role of DNA methylation in cancer, describing the technologies currently available for DNA methylation profiling. Furthermore, the latest evidence on the application of DNA methylation hotspots in cancer diagnosis and prognosis, as well as the impact of epidrugs in cancer care, is discussed to provide a comprehensive overview of the potential clinical relevance of DNA methylation in advancing personalized medicine.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daria Ricci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | | | - Maria Chiara Giuliana
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| |
Collapse
|
2
|
Fu L, Zhou X, Zhang X, Li X, Zhang F, Gu H, Wang X. Circulating tumor DNA in lymphoma: technologies and applications. J Hematol Oncol 2025; 18:29. [PMID: 40069858 PMCID: PMC11900646 DOI: 10.1186/s13045-025-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease (MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
Collapse
Affiliation(s)
- Lina Fu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong Province, 250012, Jinan, China
| | - Xuhua Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Jamal E, Poynton E, Elbogdady M, Shamaa S, Okosun J. Prospects for liquid biopsy approaches in lymphomas. Leuk Lymphoma 2024; 65:1923-1933. [PMID: 39126310 PMCID: PMC11627208 DOI: 10.1080/10428194.2024.2389210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Analytes within liquid biopsies have emerged as promising alternatives to traditional tissue biopsies for various malignancies, including lymphomas. This review explores the clinical applications of one such liquid biopsy analyte, circulating tumor DNA (ctDNA) in different types of lymphoma, focusing on its role in diagnosis, disease monitoring, and relapse detection. Advancements in next-generation sequencing (NGS) and machine learning have enhanced ctDNA analysis, offering a multi-omic approach to understanding tumor genetics. In lymphoma, ctDNA provides insights into tumor heterogeneity, aids in genetic profiling, and predicts treatment response. Recent studies demonstrate the prognostic value of ctDNA and its potential to improve patient outcomes by facilitating early disease detection and personalized treatment strategies Despite these advancements, challenges remain in optimizing sample collection, processing, assay sensitivity, and overall consensus workflows in order to facilitate integration into routine clinical practice.
Collapse
Affiliation(s)
- Esraa Jamal
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Clinical Haematology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Edward Poynton
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mohamed Elbogdady
- Clinical Haematology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Sameh Shamaa
- Clinical Haematology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Jessica Okosun
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm (Beijing) 2024; 5:e766. [PMID: 39525954 PMCID: PMC11550092 DOI: 10.1002/mco2.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) methylation, an innovative liquid biopsy biomarker, has emerged as a promising tool in early cancer diagnosis, monitoring, and prognosis prediction. As a noninvasive approach, liquid biopsy overcomes the limitations of traditional tissue biopsy. Among various biomarkers, ctDNA methylation has garnered significant attention due to its high specificity and early detection capability across diverse cancer types. Despite its immense potential, the clinical application of ctDNA methylation faces substantial challenges pertaining to sensitivity, specificity, and standardization. In this review, we begin by introducing the basic biology and common detection techniques of ctDNA methylation. We then explore recent advancements and the challenges faced in the clinical application of ctDNA methylation in liquid biopsies. This includes progress in early screening and diagnosis, identification of clinical molecular subtypes, monitoring of recurrence and minimal residual disease (MRD), prediction of treatment response and prognosis, assessment of tumor burden, and determination of tissue origin. Finally, we discuss the future perspectives and challenges of ctDNA methylation detection in clinical applications. This comprehensive overview underscores the vital role of ctDNA methylation in enhancing cancer diagnostic accuracy, personalizing treatments, and effectively monitoring disease progression, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Lingyu Li
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yingli Sun
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
5
|
de Leval L, Gaulard P, Dogan A. A practical approach to the modern diagnosis and classification of T- and NK-cell lymphomas. Blood 2024; 144:1855-1872. [PMID: 38728419 PMCID: PMC11830980 DOI: 10.1182/blood.2023021786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT T- and natural killer (NK)-cell lymphomas are neoplasms derived from immature T cells (lymphoblastic lymphomas), or more commonly, from mature T and NK cells (peripheral T-cell lymphomas, PTCLs). PTCLs are rare but show marked biological and clinical diversity. They are usually aggressive and may present in lymph nodes, blood, bone marrow, or other organs. More than 30 T/NK-cell-derived neoplastic entities are recognized in the International Consensus Classification and the classification of the World Health Organization (fifth edition), both published in 2022, which integrate the most recent knowledge in hematology, immunology, pathology, and genetics. In both proposals, disease definition aims to integrate clinical features, etiology, implied cell of origin, morphology, phenotype, and genetic features into biologically and clinically relevant clinicopathologic entities. Cell derivation from innate immune cells or specific functional subsets of CD4+ T cells such as follicular helper T cells is a major determinant delineating entities. Accurate diagnosis of T/NK-cell lymphoma is essential for clinical management and mostly relies on tissue biopsies. Because the histological presentation may be heterogeneous and overlaps with that of many benign lymphoid proliferations and B-cell lymphomas, the diagnosis is often challenging. Disease location, morphology, and immunophenotyping remain the main features guiding the diagnosis, often complemented by genetic analysis including clonality and high-throughput sequencing mutational studies. This review provides a comprehensive overview of the classification and diagnosis of T-cell lymphoma in the context of current concepts and scientific knowledge.
Collapse
MESH Headings
- Humans
- Lymphoma, Extranodal NK-T-Cell/diagnosis
- Lymphoma, Extranodal NK-T-Cell/classification
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Killer Cells, Natural/pathology
- Killer Cells, Natural/immunology
- Lymphoma, T-Cell/classification
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/genetics
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
6
|
Huang DZ, Zhang X, Rao J. [Progression and application of circulating tumor DNA in lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:878-882. [PMID: 39414617 PMCID: PMC11518914 DOI: 10.3760/cma.j.cn121090-20240528-00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 10/18/2024]
Abstract
Lymphomas are a highly heterogeneous group of tumors that are classified into several subtypes. The gold standard method for the molecular profiling of lymphoma is based on invasive lymph node or tissue biopsy. However, this method cannot accurately capture spatial tumor heterogeneity in each patient as well as systemic tumor invasion and tumor burden. Circulating tumor DNA (ctDNA) is an emerging and highly versatile biomarker that overcomes the basic limitations of imaging scanning and tissue biopsy; has the characteristics of being simple, rapid, and non-invasive; and has good specificity and high sensitivity. ctDNA testing has been applied to a variety of subtypes of lymphoma and has been used for somatic mutation genotyping, efficacy monitoring during treatment, detection of minimal residual disease, and the prediction of survival, which may help clinicians make better clinical decisions in the diagnosis and treatment of lymphoma patients. Furthermore, this study also aims to review the different methods of ctDNA analysis and describe the specific applications of ctDNA in different lymphoma subtypes.
Collapse
Affiliation(s)
- D Z Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China
| | - X Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China Jinfeng Laboratory, Chongqing 401329, China
| | - J Rao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing Key Laboratory of Hematology and Microenvironment, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400037, China
| |
Collapse
|
7
|
Zhang S, Wang X, Yang Z, Ding M, Zhang M, Young KH, Zhang X. Minimal residual disease detection in lymphoma: methods, procedures and clinical significance. Front Immunol 2024; 15:1430070. [PMID: 39188727 PMCID: PMC11345172 DOI: 10.3389/fimmu.2024.1430070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Lymphoma is a highly heterogeneous lymphohematopoietic tumor. As our understanding of the biological and pathological characteristics of lymphoma improves, we are identifying an increasing number of lymphoma subtypes. Genotyping has enhanced our ability to diagnose, treat, and monitor the prognosis of lymphoma. Despite significant improvements in treatment effectiveness, traditional methods for assessing disease response and monitoring prognosis are imperfect, and there is no significant improvement in overall remission rates for lymphoma patients. Minimal Residual Disease (MRD) is often indicative of refractory disease or early relapse. For lymphoma patients, personalized MRD monitoring techniques offer an efficient means to estimate disease remission levels, predict early relapse risk, and assess the effectiveness of new drug regimens. In this review, we delve into the MRD procedures in lymphoma, including sample selection and requirements, detection methods and their limitations and advantages, result interpretation. Besides, we also introduce the clinical applications of MRD detection in lymphoma.
Collapse
Affiliation(s)
- Sijun Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Xiangyu Wang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Ken H. Young
- Division of Hematopathology, Duke University Medicine Center, Duke Cancer Institute, Durham, NC, United States
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Tian XP, Cai J, Xia Y, Zhang YC, Wang L, Liu PP, Huang HQ, Li YJ, Zhou H, Li ZM, Yang J, Wei LQ, Zou QH, Huang Y, Li J, Ling L, Zhong WL, Cai QQ. First-line sintilimab with pegaspargase, gemcitabine, and oxaliplatin in advanced extranodal natural killer/T cell lymphoma (SPIRIT): a multicentre, single-arm, phase 2 trial. Lancet Haematol 2024; 11:e336-e344. [PMID: 38554717 DOI: 10.1016/s2352-3026(24)00066-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) inhibitor sintilimab is effective in relapsed and refractory extranodal natural killer/T cell lymphoma (ENKTL), nasal type. We aimed to assess the safety and activity of sintilimab plus P-GEMOX (pegaspargase, gemcitabine, and oxaliplatin) in the first-line setting for advanced ENKTL. METHODS The multicentre, single-arm, phase 2 trial was done at three medical centres in China. Patients aged 18-75 years with treatment-naive pathologically confirmed advanced ENKTL and an with Eastern Cooperative Oncology Group performance status score of 0-2 were eligible. Patients received intravenous sintilimab (200 mg on day 1), intramuscular pegaspargase (2000 U/m2 on day 1), intravenous gemcitabine (1 g/m2 on days 1 and 8), and intravenous oxaliplatin (130 mg/m2 on day 1) every 3 weeks for six cycles, followed by intravenous sintilimab (200 mg) every 3 weeks for up to 2 years or until disease progression or unacceptable toxicities. The primary endpoint was the complete response rate in the intention-to-treat population. The secondary endpoints were overall response rate (ORR), progression-free survival (PFS), disease-free survival (DFS), and overall survival. This trial is registered with ClinicalTrials.gov, NCT04127227. Enrolment has been completed, and follow-up is ongoing. FINDINGS Between Nov 29, 2019, and Sept 7, 2022, 34 eligible patients were enrolled (median age 39 years [IQR 32-55]; 25 [74%] of 34 patients were male; nine [26%] were female; and all were of Asian ethnicity). At the data cutoff (July 20, 2023), the median follow-up was 21 months (IQR 13-32). The complete response rate was 85% (29 of 34 patients, 95% CI 70-94). Five patients (15%; 95% CI 7-30) attained partial response and the ORR was 100% (34 of 34 patients). 24-month PFS was 64% (95% CI 48-86), 24-month DFS was 72% (54-95), and 36-month overall survival was 76% (52-100). The most common grade 3 or 4 treatment-related adverse events were neutropenia (17 [50%] of 34 patients), anaemia (10 [29%] patients), and hypertriglyceridemia (10 [29%] patients). Hypothyroidism was the most frequent immune-related adverse event (18 [53%]), including grade 3 hypothyroidism in one (3%) patient that caused treatment termination. No severe adverse events occurred. There were three deaths: one due to haemophagocytic syndrome, one due to disease progression, and one due to unknown cause, which were not considered to be treatment related. INTERPRETATION Combination of sintilimab with P-GEMOX seems to be an active and safe first-line regimen for patients with advanced ENKTL. FUNDING National Key Research and Development Program and National Natural Science Foundation of China, Guangzhou Science and Technology Program and the Clinical Oncology Foundation of Chinese Society of Clinical Oncology.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Xia
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Chen Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Pan-Pan Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Qiang Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Jun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Zhou
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhi-Ming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Yang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li-Qiang Wei
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi-Hua Zou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Huang
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Center for Migrant Health Policy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Long Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qing-Qing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
9
|
Tomacinschii V, Mosquera Orgueira A, Santos CA, Robu M, Buruiana S, Fraga Rodriguez MF. The implication of next-generation sequencing in the diagnosis and clinical management of non-Hodgkin lymphomas. Front Oncol 2023; 13:1275327. [PMID: 38023160 PMCID: PMC10663367 DOI: 10.3389/fonc.2023.1275327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Next generation sequencing (NGS) is a technology that broadens the horizon of knowledge of several somatic pathologies, especially in oncological and oncohematological pathology. In the case of NHL, the understanding of the mechanisms of tumorigenesis, tumor proliferation and the identification of genetic markers specific to different lymphoma subtypes led to more accurate classification and diagnosis. Similarly, the data obtained through NGS allowed the identification of recurrent somatic mutations that can serve as therapeutic targets that can be inhibited and thus reducing the rate of resistant cases. The article's purpose is to offer a comprehensive overview of the best ways of integrating of next-generation sequencing technologies for diagnosis, prognosis, classification, and selection of optimal therapy from the perspective of tailor-made medicine.
Collapse
Affiliation(s)
- Victor Tomacinschii
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
- Department of Hematology, Public Medical Sanitary Institution (PMSI) Institute of Oncology, Chisinau, Moldova
| | - Adrian Mosquera Orgueira
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Aliste Santos
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Maria Robu
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Maximo Francisco Fraga Rodriguez
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Forensic Sciences, Pathology, Ginecology and Obstetrics and Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|