1
|
Baidya L, Kremer K, Reddy G. Intrinsic stiffness and Θ-solvent regime in intrinsically disordered proteins: Implications for liquid-liquid phase separation. PNAS NEXUS 2025; 4:pgaf039. [PMID: 39980654 PMCID: PMC11840863 DOI: 10.1093/pnasnexus/pgaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Liquid-liquid phase separation (LLPS) exhibited by intrinsically disordered proteins (IDPs) depends on the solvation state around the Θ-regime, which separates good from poor solvent. Experimentally, the Θ-solvent regime of the finite length (N) IDPs, as probed by small angle X-ray scattering (SAXS) and single molecular fluorescence resonance energy transfer (smFRET), is in disagreement. Using computer simulations of a coarse-grained IDP model, we address the effect of chain length on the Θ-regime of IDPs with polar side chains (polyglutamine) and hydrophobic side chains (polyleucine) subject to varying concentrations of cosolvents [ C ] , urea (denaturant) or trimethylamine N-oxide (protective osmolyte) in water. Due to their intrinsic stiffness, these IDPs are always expanded on short-length scales, independent of the solvent quality. As a result, for short IDP sequences ( ≈ 10 to 25 residues), their propensity to exhibit LLPS cannot be inferred from single-chain properties. Further, for finite-size IDPs, the cosolvent concentration to attain the Θ-regime ( [ C Θ ] ) extracted from the structure factor emulating SAXS and pair distances mimicking smFRET differs. They converge to the same cosolvent concentration only at large N, indicating that finite size corrections vary for different IDP properties. We show that the radius of gyration ( R g ) of the IDPs in the Θ-solvent regime satisfies the scaling relation R g 2 = N f ( c N ) , which can be exploited to accurately extract [ C Θ ] ( c = ( [ C ] / [ C Θ ] - 1 ) ). We demonstrate the importance of finite size aspects originating from the chain stiffness and thermal blob size in analyzing IDP properties to identify the Θ-solvent regime.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Kim Y, Zheng Y. Thermophilic Behavior of Heat-Dissociative Coacervate Droplets. NANO LETTERS 2024; 24:15964-15972. [PMID: 39573916 DOI: 10.1021/acs.nanolett.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In exploring the genesis of life, liquid-liquid phase-separated coacervate droplets have been proposed as primitive protocells. Within the hydrothermal hypothesis, these droplets would emerge from molecule-rich hot fluids and thus be subjected to temperature gradients. Investigating their thermophoretic behavior can provide insights into protocell footprints in thermal landscapes, advancing our understanding of life's origins. Here, we report the thermophilic behavior of heat-dissociative droplets, contrary to the intuition that heat-associative condensates would prefer hotter areas. This aspect implies the preferential presence of heat-dissociative primordial condensates near hydrothermal environments, facilitating molecular incorporation and biochemical syntheses. Additionally, our investigations reveal similarities between thermophoretic and electrophoretic motions, dictated by molecular redistribution within droplets due to their fluid nature, which necessitates revising current electrophoresis frameworks for surface charge characterization. Our study elucidates how coacervate droplets navigate thermal and electric fields, reveals their thermal-landscape-dependent molecular characteristics, and bridges foundational theories of early life: the hydrothermal and condensate-as-protocell hypotheses.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yuebing Zheng
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Coronas LE, Van T, Iorio A, Lapidus LJ, Feig M, Sterpone F. Stability and deformation of biomolecular condensates under the action of shear flow. J Chem Phys 2024; 160:215101. [PMID: 38832749 DOI: 10.1063/5.0209119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Biomolecular condensates play a key role in cytoplasmic compartmentalization and cell functioning. Despite extensive research on the physico-chemical, thermodynamic, or crowding aspects of the formation and stabilization of the condensates, one less studied feature is the role of external perturbative fluid flow. In fact, in living cells, shear stress may arise from streaming or active transport processes. Here, we investigate how biomolecular condensates are deformed under different types of shear flows. We first model Couette flow perturbations via two-way coupling between the condensate dynamics and fluid flow by deploying Lattice Boltzmann Molecular Dynamics. We then show that a simplified approach where the shear flow acts as a static perturbation (one-way coupling) reproduces the main features of the condensate deformation and dynamics as a function of the shear rate. With this approach, which can be easily implemented in molecular dynamics simulations, we analyze the behavior of biomolecular condensates described through residue-based coarse-grained models, including intrinsically disordered proteins and protein/RNA mixtures. At lower shear rates, the fluid triggers the deformation of the condensate (spherical to oblated object), while at higher shear rates, it becomes extremely deformed (oblated or elongated object). At very high shear rates, the condensates are fragmented. We also compare how condensates of different sizes and composition respond to shear perturbation, and how their internal structure is altered by external flow. Finally, we consider the Poiseuille flow that realistically models the behavior in microfluidic devices in order to suggest potential experimental designs for investigating fluid perturbations in vitro.
Collapse
Affiliation(s)
- Luis E Coronas
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Thong Van
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Antonio Iorio
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fabio Sterpone
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
4
|
Lao Z, Tang Y, Dong X, Tan Y, Li X, Liu X, Li L, Guo C, Wei G. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides. NANOSCALE 2024; 16:4025-4038. [PMID: 38347806 DOI: 10.1039/d3nr05130g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Many RNA-binding proteins such as fused-in sarcoma (FUS) can self-assemble into reversible liquid droplets and fibrils through the self-association of their low-complexity (LC) domains. Recent experiments have revealed that SYG-rich segments in the FUS LC domains play critical roles in the reversible self-assembly behaviors of FUS. These FUS LC segments alone can self-assemble into reversible kinked fibrils, which are markedly different from the canonical irreversible steric zipper β-sheet fibrils. However, the molecular determinants underlying the reversible and irreversible self-assembly are poorly understood. Herein we conducted extensive all-atom and coarse-grained molecular dynamics simulations of four representative hexapeptides: two low-complexity aromatic-rich kinked peptides from the amyotrophic lateral sclerosis-related FUS protein, FUS37-42 (SYSGYS) and FUS54-59 (SYSSYG); and two steric zipper peptides from Alzheimer's-associated Aβ and Tau proteins, Aβ16-21 (KLVFFA) and Tau306-311 (VQIVYK). We dissected their reversible and irreversible self-assembly dynamics, predicted their phase separation behaviors, and elucidated the underpinning molecular interactions. Our simulations showed that alternating stickers (Tyr) and spacers (Gly and Ser) in FUS37-42 and FUS54-59 facilitate the formation of highly dynamic coil-rich oligomers and lead to reversible self-assembly, while consecutive hydrophobic residues of LVFF in Aβ16-21 and IVY in Tau306-311 act as hydrophobic patches, favoring the formation of stable β-sheet-rich oligomers and driving the irreversible self-assembly. Intriguingly, we found that FUS37-42 and FUS54-59 peptides, possessing the same amino acid composition and the same number of sticker and spacer residues, display differential self-assembly propensities. This finding suggests that the self-assembly behaviors of FUS peptides are fine-tuned by the site-specific patterning of spacer residues (Ser and Gly). This study provides significant mechanistic insights into reversible and irreversible peptide self-assembly, which would be helpful for understanding the molecular mechanisms underlying the formation of biological liquid condensates and pathological solid amyloid fibrils.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Le Li
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|