1
|
Gunaydin S, Simsek E, Engelman D. Enhanced recovery after cardiac surgery and developments in perioperative care: A comprehensive review. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2025; 33:121-131. [PMID: 40135093 PMCID: PMC11931364 DOI: 10.5606/tgkdc.dergisi.2024.26770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 03/27/2025]
Abstract
Enhanced Recovery After Cardiac Surgery (ERAS Cardiac) protocols offer a comprehensive, multidisciplinary approach to improve patient outcomes and reduce postoperative complications. By incorporating evidence-based practices, ERAS Cardiac aims to reduce hospital stays, enhance patient satisfaction, and optimize resource utilization. Key components include patient education, prehabilitation, nutritional optimization, and personalized medicine. The protocol's success relies on interdisciplinary collaboration among healthcare professionals, as well as active patient and family engagement. Despite challenges in implementation, such as resource constraints and patient variability, ongoing research and adaptive strategies continue to refine ERAS Cardiac programs, promising significant advancements in cardiac surgical care and recovery.
Collapse
Affiliation(s)
- Serdar Gunaydin
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara City Hospital (ERAS Turkey Society), Ankara, Türkiye
| | - Erdal Simsek
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara City Hospital (ERAS Turkey Society), Ankara, Türkiye
| | - Daniel Engelman
- University of Massachusetts Chan Medical School; President ERAS® Cardiac Society, Cardiac Surgical Critical Care & Inpatient Services, Baystate, USA
| |
Collapse
|
2
|
Passos RDH, Andari LVDWBU, Assuncão MSC. Monitor smart, use better: the future of haemodynamic monitoring. J Clin Monit Comput 2024; 38:1437-1439. [PMID: 39031234 DOI: 10.1007/s10877-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/22/2024]
Abstract
The review article "Haemodynamic Monitoring During Noncardiac Surgery" offers valuable insights but lacks evidence linking specific haemodynamic strategies to improved outcomes. There's a need for standardized protocols, ongoing clinician education, and further validation of new technologies. Additionally, balancing the use of invasive versus noninvasive methods and addressing cost-effectiveness and sustainability are essential. Continued research and adaptive practices are crucial for optimizing perioperative care.
Collapse
Affiliation(s)
- Rogerio Da Hora Passos
- Departamento de Medicina Intensiva, Intensive Care Unity - Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, SP, CEP: 05651-901, Brasil.
| | - Leonardo Van de Wiel Barros Urbano Andari
- Departamento de Medicina Intensiva, Intensive Care Unity - Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, SP, CEP: 05651-901, Brasil
| | - Murillo Santucci Cesar Assuncão
- Departamento de Medicina Intensiva, Intensive Care Unity - Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, SP, CEP: 05651-901, Brasil
| |
Collapse
|
3
|
Lasica R, Asanin M, Vukmirovic J, Maslac L, Savic L, Zdravkovic M, Simeunovic D, Polovina M, Milosevic A, Matic D, Juricic S, Jankovic M, Marinkovic M, Djukanovic L. What Do We Know about Peripartum Cardiomyopathy? Yesterday, Today, Tomorrow. Int J Mol Sci 2024; 25:10559. [PMID: 39408885 PMCID: PMC11477285 DOI: 10.3390/ijms251910559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Peripartum cardiomyopathy is a disease that occurs during or after pregnancy and leads to a significant decline in cardiac function in previously healthy women. Peripartum cardiomyopathy has a varying prevalence among women depending on the part of the world where they live, but it is associated with a significant mortality and morbidity in this population. Therefore, timely diagnosis, treatment, and monitoring of this disease from its onset are of utmost importance. Although many risk factors are associated with the occurrence of peripartum cardiomyopathy, such as conditions of life, age of the woman, nutrient deficiencies, or multiple pregnancies, the exact cause of its onset remains unknown. Advances in research on the genetic associations with cardiomyopathies have provided a wealth of data indicating a possible association with peripartum cardiomyopathy, but due to numerous mutations and data inconsistencies, the exact connection remains unclear. Significant insights into the pathophysiological mechanisms underlying peripartum cardiomyopathy have been provided by the theory of an abnormal 16-kDa prolactin, which may be generated in an oxidative stress environment and lead to vascular and consequently myocardial damage. Recent studies supporting this disease mechanism also include research on the efficacy of bromocriptine (a prolactin synthesis inhibitor) in restoring cardiac function in affected patients. Despite significant progress in the research of this disease, there are still insufficient data on the safety of use of certain drugs treating heart failure during pregnancy and breastfeeding. Considering the metabolic changes that occur in different stages of pregnancy and the postpartum period, determining the correct dosing regimen of medications is of utmost importance not only for better treatment and survival of mothers but also for reducing the risk of toxic effects on the fetus.
Collapse
Affiliation(s)
- Ratko Lasica
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Jovanka Vukmirovic
- Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia;
| | - Lidija Maslac
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Lidija Savic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Clinical Center Bezanijska Kosa, 11000 Belgrade, Serbia
| | - Dejan Simeunovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Marija Polovina
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Aleksandra Milosevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Dragan Matic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Stefan Juricic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Milica Jankovic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Milan Marinkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Lazar Djukanovic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| |
Collapse
|
4
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
5
|
Grant MC, Salenger R, Lobdell KW. Perioperative hemodynamic monitoring in cardiac surgery. Curr Opin Anaesthesiol 2024; 37:1-9. [PMID: 38085877 DOI: 10.1097/aco.0000000000001327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
PURPOSE OF REVIEW Cardiac surgery has traditionally relied upon invasive hemodynamic monitoring, including regular use of pulmonary artery catheters. More recently, there has been advancement in our understanding as well as broader adoption of less invasive alternatives. This review serves as an outline of the key perioperative hemodynamic monitoring options for cardiac surgery. RECENT FINDINGS Recent study has revealed that the use of invasive monitoring such as pulmonary artery catheters or transesophageal echocardiography in low-risk patients undergoing low-risk cardiac surgery is of questionable benefit. Lesser invasive approaches such a pulse contour analysis or ultrasound may provide a useful alternative to assess patient hemodynamics and guide resuscitation therapy. A number of recent studies have been published to support broader indication for these evolving technologies. SUMMARY More selective use of indwelling catheters for cardiac surgery has coincided with greater application of less invasive alternatives. Understanding the advantages and limitations of each tool allows the bedside clinician to identify which hemodynamic monitoring modality is most suitable for which patient.
Collapse
Affiliation(s)
- Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine
| | - Rawn Salenger
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kevin W Lobdell
- Sanger Heart & Vascular Institute, Advocate Health, Charlotte, North Carolina, USA
| |
Collapse
|
6
|
Kandil S, Sedra A. Hemodynamic monitoring in liver transplantation 'the hemodynamic system'. Curr Opin Organ Transplant 2024; 29:72-81. [PMID: 38032246 DOI: 10.1097/mot.0000000000001125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide a comprehensive review of hemodynamic monitoring in liver transplantation. RECENT FINDINGS Radial arterial blood pressure monitoring underestimates the aortic root arterial blood pressure and causes excessive vasopressor and worse outcomes. Brachial and femoral artery monitoring is well tolerated and should be considered in critically ill patients expected to be on high dose pressors. The pulmonary artery catheter is the gold standard of hemodynamic monitoring and is still widely used in liver transplantation; however, it is a highly invasive monitor with potential for serious complications and most of its data can be obtained by other less invasive monitors. Rescue transesophageal echocardiography relies on few simple views and should be available as a standby to manage sudden hemodynamic instability. Risk of esophageal bleeding from transesophageal echocardiography in liver transplantation is the same as in other patient populations. The arterial pulse waveform analysis based cardiac output devices are minimally invasive and have the advantage of real-time beat to beat monitoring of cardiac output. No hemodynamic monitor can improve clinical outcomes unless integrated into a goal-directed hemodynamic therapy. The hemodynamic monitoring technique should be tailored to the patient's medical status, surgical technique, and the anesthesiologist's level of expertise. SUMMARY The current article provides a review of the current hemodynamic monitoring systems and their integration in goal-directed hemodynamic therapy.
Collapse
Affiliation(s)
- Sherif Kandil
- Department of Anesthesiology, Keck Medical School of USC, Los Angeles, California, USA
| | | |
Collapse
|
7
|
Lobdell KW, Grant MC, Salenger R. Temporary mechanical circulatory support & enhancing recovery after cardiac surgery. Curr Opin Anaesthesiol 2024; 37:16-23. [PMID: 38085881 DOI: 10.1097/aco.0000000000001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
PURPOSE OF REVIEW This review highlights the integration of enhanced recovery principles with temporary mechanical circulatory support associated with adult cardiac surgery. RECENT FINDINGS Enhanced recovery elements and efforts have been associated with improvements in quality and value. Temporary mechanical circulatory support technologies have been successfully employed, improved, and the value of their proactive use to maintain hemodynamic goals and preserve long-term myocardial function is accruing. SUMMARY Temporary mechanical circulatory support devices promise to enhance recovery by mitigating the risk of complications, such as postcardiotomy cardiogenic shock, organ dysfunction, and death, associated with adult cardiac surgery.
Collapse
Affiliation(s)
- Kevin W Lobdell
- Sanger Heart & Vascular Institute, Advocate Health, Charlotte, North Carolina
| | - Michael C Grant
- Johns Hopkins University School of Medicine, Anesthesiology and Critical Care Medicine, Baltimore
| | - Rawn Salenger
- University of Maryland School of Medicine, Department of Surgery, Towson, Maryland, USA
| |
Collapse
|
8
|
Bai W, Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y. Skin-inspired, sensory robots for electronic implants. RESEARCH SQUARE 2023:rs.3.rs-3665801. [PMID: 38196588 PMCID: PMC10775366 DOI: 10.21203/rs.3.rs-3665801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Wubin Bai
- University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | | | | | | | - Yizhang Wu
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|