1
|
Nedadur R, Bhatt N, Liu T, Chu MWA, McCarthy PM, Kline A. The Emerging and Important Role of Artificial Intelligence in Cardiac Surgery. Can J Cardiol 2024; 40:1865-1879. [PMID: 39098601 DOI: 10.1016/j.cjca.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Artificial Intelligence (AI) has greatly affected our everyday lives and holds great promise to change the landscape of medicine. AI is particularly positioned to improve care for the increasingly complex patients undergoing cardiac surgery using the immense amount of data generated in the course of their care. When deployed, AI can be used to analyze this information at the patient's bedside more expediently and accurately, all while providing new insights. This review summarizes the current applications of AI in cardiac surgery from the vantage point of a patient's journey. Applications of AI include preoperative risk assessment, intraoperative planning, postoperative patient care, and outpatient telemonitoring, encompassing the spectrum of cardiac surgical care. Offloading of administrative processes and enhanced experience with information gathering also represent a unique and under-represented avenue for future use of AI. As clinicians, understanding the nomenclature and applications of AI is important to contextualize issues, to ensure problem-driven solutions, and for clinical benefit. Precision medicine, and thus clinically relevant AI, remains dependent on data curation and warehousing to gather insights from large multicentre repositories while treating privacy with the utmost importance. AI tasks should not be siloed but rather holistically integrated into clinical workflow to retain context and relevance. As cardiac surgeons, AI allows us to look forward to a bright future of more efficient use of our clinical expertise toward high-level decision making and technical prowess.
Collapse
Affiliation(s)
- Rashmi Nedadur
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA.
| | - Nitish Bhatt
- Peter Munk Cardiac Center, Toronto General Hospital, Toronto, Ontario, Canada
| | - Tom Liu
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| | | | - Patrick M McCarthy
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| | - Adrienne Kline
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Huerta N, Rao SJ, Isath A, Wang Z, Glicksberg BS, Krittanawong C. The premise, promise, and perils of artificial intelligence in critical care cardiology. Prog Cardiovasc Dis 2024; 86:2-12. [PMID: 38936757 DOI: 10.1016/j.pcad.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Artificial intelligence (AI) is an emerging technology with numerous healthcare applications. AI could prove particularly useful in the cardiac intensive care unit (CICU) where its capacity to analyze large datasets in real-time would assist clinicians in making more informed decisions. This systematic review aimed to explore current research on AI as it pertains to the CICU. A PRISMA search strategy was carried out to identify the pertinent literature on topics including vascular access, heart failure care, circulatory support, cardiogenic shock, ultrasound, and mechanical ventilation. Thirty-eight studies were included. Although AI is still in its early stages of development, this review illustrates its potential to yield numerous benefits in the CICU.
Collapse
Affiliation(s)
- Nicholas Huerta
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Shiavax J Rao
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Ameesh Isath
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
3
|
Bao X, Kumar SS, Shah NJ, Penning D, Weinstein M, Malhotra G, Rose S, Drover D, Pennington MW, Domino K, Meng L, Treggiari M, Clavijo C, Wagener G, Chitilian H, Maheshwari K. AcumenTM hypotension prediction index guidance for prevention and treatment of hypotension in noncardiac surgery: a prospective, single-arm, multicenter trial. Perioper Med (Lond) 2024; 13:13. [PMID: 38439069 PMCID: PMC10913612 DOI: 10.1186/s13741-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Intraoperative hypotension is common during noncardiac surgery and is associated with postoperative myocardial infarction, acute kidney injury, stroke, and severe infection. The Hypotension Prediction Index software is an algorithm based on arterial waveform analysis that alerts clinicians of the patient's likelihood of experiencing a future hypotensive event, defined as mean arterial pressure < 65 mmHg for at least 1 min. METHODS Two analyses included (1) a prospective, single-arm trial, with continuous blood pressure measurements from study monitors, compared to a historical comparison cohort. (2) A post hoc analysis of a subset of trial participants versus a propensity score-weighted contemporaneous comparison group, using external data from the Multicenter Perioperative Outcomes Group (MPOG). The trial included 485 subjects in 11 sites; 406 were in the final effectiveness analysis. The post hoc analysis included 457 trial participants and 15,796 comparison patients. Patients were eligible if aged 18 years or older, American Society of Anesthesiologists (ASA) physical status 3 or 4, and scheduled for moderate- to high-risk noncardiac surgery expected to last at least 3 h. MEASUREMENTS minutes of mean arterial pressure (MAP) below 65 mmHg and area under MAP < 65 mmHg. RESULTS Analysis 1: Trial subjects (n = 406) experienced a mean of 9 ± 13 min of MAP below 65 mmHg, compared with the MPOG historical control mean of 25 ± 41 min, a 65% reduction (p < 0.001). Subjects with at least one episode of hypotension (n = 293) had a mean of 12 ± 14 min of MAP below 65 mmHg compared with the MPOG historical control mean of 28 ± 43 min, a 58% reduction (p< 0.001). Analysis 2: In the post hoc inverse probability treatment weighting model, patients in the trial demonstrated a 35% reduction in minutes of hypotension compared to a contemporaneous comparison group [exponentiated coefficient: - 0.35 (95%CI - 0.43, - 0.27); p < 0.001]. CONCLUSIONS The use of prediction software for blood pressure management was associated with a clinically meaningful reduction in the duration of intraoperative hypotension. Further studies must investigate whether predictive algorithms to prevent hypotension can reduce adverse outcomes. TRIAL REGISTRATION Clinical trial number: NCT03805217. Registry URL: https://clinicaltrials.gov/ct2/show/NCT03805217 . Principal investigator: Xiaodong Bao, MD, PhD. Date of registration: January 15, 2019.
Collapse
Affiliation(s)
- Xiaodong Bao
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Sathish S Kumar
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nirav J Shah
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donald Penning
- Department of Anesthesiology, Henry Ford Health System, Detroit, MI, USA
| | - Mitchell Weinstein
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gaurav Malhotra
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Rose
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - David Drover
- Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - Matthew W Pennington
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karen Domino
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Lingzhong Meng
- Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mariam Treggiari
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Claudia Clavijo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gebhard Wagener
- Department of Anesthesiology, College of Physicians & Surgeons of Columbia University, New York, NY, USA
| | - Hovig Chitilian
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kamal Maheshwari
- Department of General Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|