1
|
Treviño-Alvarez AM, Cabeza de Baca T, Stinson EJ, Gluck ME, Piaggi P, Votruba SB, Krakoff J, Chang DC. Acid accumulation is associated with metabolic alterations; higher energy, fat, and protein intake; and energy expenditure. Obesity (Silver Spring) 2024; 32:1541-1550. [PMID: 38932559 DOI: 10.1002/oby.24086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE The objective of this study was to study how acid accumulation (lower plasma bicarbonate and higher anion gap [AG] and corrected anion gap [CAG]) correlates with metabolic parameters, food intake, and 24-h energy expenditure (EE). METHODS Acid accumulation was measured in 286 healthy adults with estimated glomerular filtration rate > 60 mL/min/1.73 m2. Measurements included body composition by dual-energy x-ray absorptiometry scan, ad libitum energy intake by a vending machine paradigm over 3 days, and 24-h EE in a whole-room indirect calorimeter. RESULTS Lower bicarbonate, higher AG, and higher CAG were correlated with higher waist and thigh circumferences, body fat (percentage), fat mass, triglycerides, and lower high-density lipoprotein cholesterol. Acid accumulation markers were correlated with higher total energy (CAG partial r = 0.17; p = 0.02), fat (CAG partial r = 0.17; p = 0.02), protein intake (CAG partial r = 0.20; p = 0.006), and 24-h EE (CAG partial r = 0.24; p = 0.0007). A mediation analysis of CAG and total energy intake found that 24-h EE was a partial mediator (40%), but the association remained significant (β = 0.15; p < 0.0001). CONCLUSIONS In healthy individuals, acid accumulation was associated with an unfavorable metabolic phenotype; higher 24-h EE; and increased total energy, fat, and protein intake. Acid accumulation markers, as putative markers of higher dietary acid load (e.g., from protein), may affect energy balance physiology promoting weight gain.
Collapse
Affiliation(s)
- Andrés M Treviño-Alvarez
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Tomás Cabeza de Baca
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Emma J Stinson
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Marci E Gluck
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Paolo Piaggi
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Susanne B Votruba
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Jonathan Krakoff
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Douglas C Chang
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| |
Collapse
|
2
|
Wieërs MLAJ, Beynon-Cobb B, Visser WJ, Attaye I. Dietary acid load in health and disease. Pflugers Arch 2024; 476:427-443. [PMID: 38282081 PMCID: PMC11006742 DOI: 10.1007/s00424-024-02910-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Maintaining an appropriate acid-base equilibrium is crucial for human health. A primary influencer of this equilibrium is diet, as foods are metabolized into non-volatile acids or bases. Dietary acid load (DAL) is a measure of the acid load derived from diet, taking into account both the potential renal acid load (PRAL) from food components like protein, potassium, phosphorus, calcium, and magnesium, and the organic acids from foods, which are metabolized to bicarbonate and thus have an alkalinizing effect. Current Western diets are characterized by a high DAL, due to large amounts of animal protein and processed foods. A chronic low-grade metabolic acidosis can occur following a Western diet and is associated with increased morbidity and mortality. Nutritional advice focusing on DAL, rather than macronutrients, is gaining rapid attention as it provides a more holistic approach to managing health. However, current evidence for the role of DAL is mainly associative, and underlying mechanisms are poorly understood. This review focusses on the role of DAL in multiple conditions such as obesity, cardiovascular health, impaired kidney function, and cancer.
Collapse
Affiliation(s)
- Michiel L A J Wieërs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Beverley Beynon-Cobb
- Department of Nutrition & Dietetics, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wesley J Visser
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Dietetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Duan D, Perin J, Osman A, Sgambati F, Kim LJ, Pham LV, Polotsky VY, Jun JC. Effects of sex, age, and body mass index on serum bicarbonate. FRONTIERS IN SLEEP 2023; 2:1195823. [PMID: 37736141 PMCID: PMC10512520 DOI: 10.3389/frsle.2023.1195823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Rationale Obesity hypoventilation syndrome (OHS) is often underdiagnosed, with significant morbidity and mortality. Bicarbonate, as a surrogate of arterial carbon dioxide, has been proposed as a screening tool for OHS. Understanding the predictors of serum bicarbonate could provide insights into risk factors for OHS. We hypothesized that the bicarbonate levels would increase with an increase in body mass index (BMI), since the prevalence of OHS increases with obesity. Methods We used the TriNetX Research Network, an electronic health record database with de-identified clinical data from participating healthcare organizations across the United States, to identify 93,320 adults without pulmonary or advanced renal diseases who had serum bicarbonate and BMI measurements within 6 months of each other between 2017 and 2022. We used linear regression analysis to examine the associations between bicarbonate and BMI, age, and their interactions for the entire cohort and stratified by sex. We also applied a non-linear machine learning algorithm (XGBoost) to examine the relative importance of age, BMI, sex, race/ethnicity, and obstructive sleep apnea (OSA) status on bicarbonate. Results This cohort population was 56% women and 72% white and 80% non-Hispanic individuals, with an average (SD) age of 49.4 (17.9) years and a BMI of 29.1 (6.1) kg/m2. The mean bicarbonate was 24.8 (2.8) mmol/L, with higher levels in men (mean 25.2 mmol/L) than in women (mean 24.4 mmol/L). We found a small negative association between bicarbonate and BMI, with an expected change of -0.03 mmol/L in bicarbonate for each 1 kg/m2 increase in BMI (p < 0.001), in the entire cohort and both sexes. We found sex differences in the bicarbonate trajectory with age, with women exhibiting lower bicarbonate values than men until age 50, after which the bicarbonate levels were modestly higher. The non-linear machine learning algorithm similarly revealed that age and sex played larger roles in determining bicarbonate levels than the BMI or OSA status. Conclusion Contrary to our hypothesis, BMI is not associated with elevated bicarbonate levels, and age modifies the impact of sex on bicarbonate.
Collapse
Affiliation(s)
- Daisy Duan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jamie Perin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Adam Osman
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Francis Sgambati
- Center for Interdisciplinary Sleep Research and Education, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y. Polotsky
- Departments of Anesthesiology and Critical Care Medicine and Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Zhu DD, Tan YR, Zheng LW, Lao JZ, Liu JY, Yu J, Chen P. Microneedle-Coupled Epidermal Sensors for In-Situ-Multiplexed Ion Detection in Interstitial Fluids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36916026 DOI: 10.1021/acsami.3c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Maintaining the concentrations of various ions in body fluids is critical to all living organisms. In this contribution, we designed a flexible microneedle patch coupled electrode array (MNP-EA) for the in situ multiplexed detection of ion species (Na+, K+, Ca2+, and H+) in tissue interstitial fluid (ISF). The microneedles (MNs) are mechanically robust for skin or cuticle penetration (0.21 N/needle) and highly swellable to quickly extract sufficient ISF onto the ion-selective electrochemical electrodes (∼6.87 μL/needle in 5 min). The potentiometric sensor can simultaneously detect these ion species with nearly Nernstian response in the ranges wider enough for diagnosis purposes (Na+: 0.75-200 mM, K+: 1-128 mM, Ca2+: 0.25-4.25 mM, pH: 5.5-8.5). The in vivo experiments on mice, humans, and plants demonstrate the feasibility of MNP-EA for timely and convenient diagnosis of ion imbalances with minimal invasiveness. This transdermal sensing platform shall be instrumental to home-based diagnosis and health monitoring of chronic diseases and is also promising for smart agriculture and the study of plant biology.
Collapse
Affiliation(s)
- Dan Dan Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Yu Rong Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Le Wen Zheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jia Zheng Lao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang 314000, China
| | - Ji Yang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Skin Research Institute of Singapore, Singapore 308232, Singapore
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
6
|
Lambert DC, Kane J, Slaton A, Abramowitz MK. Associations of Metabolic Syndrome and Abdominal Obesity with Anion Gap Metabolic Acidosis among US Adults. KIDNEY360 2022; 3:1842-1851. [PMID: 36514392 PMCID: PMC9717647 DOI: 10.34067/kid.0002402022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Obesity is a recently identified risk factor for metabolic acidosis and anion gap elevations in the absence of CKD. Metabolic acidosis is a treatable condition with substantial adverse effects on human health. Additional investigations are needed to characterize at-risk populations and explore potential mechanisms. We hypothesized metabolic syndrome (MetS) and waist circumference (WC) would be closely associated with this pathology. METHODS Adult participants from NHANES 1999-2018 meeting study criteria were compiled as main (n=31,163) and fasting (n=12,860) cohorts. Regression models adjusted for dietary acid, eGFR, and other factors examined associations of WC and MetS features with anion gap metabolic acidosis and its components (serum bicarbonate ≤23 mEq/L and anion gap >95th percentile). RESULTS Greater WC and MetS features were associated with progressively lower bicarbonate, higher anion gap, and greater odds ratios (OR) of metabolic acidosis (MA) and anion gap metabolic acidosis (AGMA). Compared with the reference, participants with the highest WC had ORs for MA and AGMA of 2.26; 95% CI, 1.96 to 2.62 and 2.89; 95% CI, 1.97 to 4.21; those with three and four versus zero MetS features had ORs for AGMA of 2.52; 95% CI, 1.95 to 2.94 and 3.05; 95% CI, 2.16 to 3.82. Associations of body mass index with outcomes were attenuated or absent after adjustment for WC or MetS. Findings were preserved after excluding eGFR <90 ml/min per 1.73 m2 and albuminuria. A lower MA cutoff (<22 mEq/L) raised the estimate of association between MetS and MA (OR for three and four vs zero features: 3.56; 95% CI, 2.53 to 5.02 and 5.44; 95% CI, 3.66 to 8.08). CONCLUSIONS Metabolic diseases are characterized by metabolic acidosis and anion gap elevations. Metabolic dysfunction may predispose patients without CKD to systemic acidosis from endogenous sources. Comprehensive acid-base analyses may be informative in patients with metabolic diseases.
Collapse
Affiliation(s)
- Douglas C Lambert
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
- Department of Medicine, Section of Obesity Medicine, Northwell Health, New York
| | - Jamie Kane
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
- Department of Medicine, Section of Obesity Medicine, Northwell Health, New York
| | - Anthony Slaton
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
| | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Tamargo C, Cervantes CE. Minding the Gap Beyond Kidney Disease: Utility of the Anion Gap in Metabolic Syndrome. KIDNEY360 2022; 3:1819-1822. [PMID: 36514414 PMCID: PMC9717632 DOI: 10.34067/kid.0005142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Christina Tamargo
- Department of Medicine, Osler Medical Residency, Johns Hopkins University, Baltimore, Maryland
| | - C. Elena Cervantes
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
8
|
Lambert DC, Abramowitz MK. Obesity, Anion Accumulation, and Anion Gap Metabolic Acidosis: A Cohort Study. KIDNEY360 2021; 2:1706-1715. [PMID: 35372994 PMCID: PMC8785829 DOI: 10.34067/kid.0003562021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Background Obesity is associated with low serum bicarbonate, an indicator of metabolic acidosis and a CKD risk factor. To further characterize acid-base disturbance and subclinical metabolic acidosis in this population, we examined prospective associations of body mass index (BMI) with elevated anion gap and whether anion gap values in obesity associate with low bicarbonate. Methods Data from adult outpatients (n=94,448) in the Bronx, New York were collected from 2010 to 2018. Mixed effects models and Cox proportional hazards models were used to examine associations of BMI with elevated anion gap and anion gap metabolic acidosis and of baseline anion gap with incident low bicarbonate and anion gap metabolic acidosis. Anion gap was defined using traditional and albumin-corrected calculations. Results Greater BMI was associated with higher anion gap over time and with progressively greater risk of developing an elevated anion gap (hazard ratio [HR] for body mass index [BMI]≥40 kg/m2 versus 18 to <25 kg/m2, 1.32; 95% confidence interval [95% CI], 1.23 to 1.42 for traditional and HR for BMI≥40 kg/m2 versus 18 to <25 kg/m2, 1.74; 95% CI, 1.63 to 1.85 for corrected). Higher BMI was also associated with increased risk of developing anion gap metabolic acidosis (HR for BMI≥40 kg/m2, 1.53; 95% CI, 1.39 to 1.69). Among patients with obesity, higher anion gap was associated with increased risk of incident low bicarbonate (HR for fourth versus first quartile, 1.29; 95% CI, 1.23 to 1.44 for traditional and HR for fourth versus first quartile, 1.36; 95% CI, 1.26 to 1.48 for corrected) and higher risk of anion gap metabolic acidosis (HR for fourth versus first quartile, 1.78; 95% CI, 1.59 to 1.99). Conclusions Obesity is characterized by unmeasured anion accumulation and acid retention or overproduction. Modest elevations in anion gap among patients with obesity are associated with previously unrecognized anion gap metabolic acidosis.
Collapse
Affiliation(s)
- Douglas C. Lambert
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
- Section of Obesity Medicine, Northwell Health, Great Neck, New York
| | - Matthew K. Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|