1
|
Montoto-Marqués A, Benito-Penalva J, Ferreiro-Velasco ME, Andrew Wright M, Salvador-De la Barrera S, Kumru H, Gaitán-Pérez N, Hernández-Navarro A, Rodríguez-Sotillo A, Martins Braga F, Palencia-Vidal A, Vidal-Samsó J. Advances and New Therapies in Traumatic Spinal Cord Injury. J Clin Med 2025; 14:2203. [PMID: 40217653 PMCID: PMC11989486 DOI: 10.3390/jcm14072203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Recovery from traumatic spinal cord injury (tSCI) is challenging due to the limited regenerative capacity of the central nervous system to restore cells, myelin, and neural connections. At the clinical level, the fundamental pillars of treatment are the reduction in secondary damage (neuroprotection) and rehabilitation; these are the tools we have to mitigate the disability caused by spinal cord injury (SCI). To date, the treatments on which neuroprotection has been based are the prevention of acute respiratory failure to avoid hypoxia, early hemodynamic control, neuroprotective drugs and surgical management. Optimizing early hemodynamic control to ensure adequate spinal cord perfusion may be key to the management of SCI. While neuroprotective agents like methylprednisolone have fallen into disuse, several promising therapies are currently being tested in clinical trials. In terms of surgical treatment, although their impact on neurological recovery remains debated, appropriate early bone decompression followed by duroplasty in selected cases is increasingly recommended. Advances in cell therapies hold significant potential for enhancing both clinical and functional outcomes in SCI patients. Moreover, emerging neuromodulation techniques, such as transcutaneous and epidural stimulation, along with innovations in rehabilitation technologies-such as robotic systems and exoskeletons-are becoming indispensable tools for improving locomotion and overall mobility in individuals with SCI. This article provides an update on the advances in neuroprotection against secondary damage caused by tSCI, in cellular therapies, and in new rehabilitation therapies.
Collapse
Affiliation(s)
- Antonio Montoto-Marqués
- Unidad de Lesionados Medulares, Complejo Hospitalario Universitario de A Coruña, Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Jesús Benito-Penalva
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08916 Barcelona, Spain; (J.B.-P.); (M.A.W.); (H.K.); (A.H.-N.); (F.M.B.)
- Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - María Elena Ferreiro-Velasco
- Unidad de Lesionados Medulares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (M.E.F.-V.); (S.S.-D.l.B.); (N.G.-P.); (A.R.-S.); (A.P.-V.)
| | - Mark Andrew Wright
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08916 Barcelona, Spain; (J.B.-P.); (M.A.W.); (H.K.); (A.H.-N.); (F.M.B.)
- Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sebastian Salvador-De la Barrera
- Unidad de Lesionados Medulares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (M.E.F.-V.); (S.S.-D.l.B.); (N.G.-P.); (A.R.-S.); (A.P.-V.)
| | - Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08916 Barcelona, Spain; (J.B.-P.); (M.A.W.); (H.K.); (A.H.-N.); (F.M.B.)
- Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Nelson Gaitán-Pérez
- Unidad de Lesionados Medulares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (M.E.F.-V.); (S.S.-D.l.B.); (N.G.-P.); (A.R.-S.); (A.P.-V.)
| | - Agustin Hernández-Navarro
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08916 Barcelona, Spain; (J.B.-P.); (M.A.W.); (H.K.); (A.H.-N.); (F.M.B.)
- Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Antonio Rodríguez-Sotillo
- Unidad de Lesionados Medulares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (M.E.F.-V.); (S.S.-D.l.B.); (N.G.-P.); (A.R.-S.); (A.P.-V.)
| | - Fernando Martins Braga
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08916 Barcelona, Spain; (J.B.-P.); (M.A.W.); (H.K.); (A.H.-N.); (F.M.B.)
- Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Angela Palencia-Vidal
- Unidad de Lesionados Medulares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain; (M.E.F.-V.); (S.S.-D.l.B.); (N.G.-P.); (A.R.-S.); (A.P.-V.)
| | - Joan Vidal-Samsó
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08916 Barcelona, Spain; (J.B.-P.); (M.A.W.); (H.K.); (A.H.-N.); (F.M.B.)
- Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| |
Collapse
|
2
|
Jung J, Patel S, Khan A, Baamonde AD, Mirallave-Pescador A, Chowdhury YA, Bell D, Malik I, Thomas N, Grahovac G, Vergani F, Ahmed AI, Lavrador JP. nTMS in spinal cord injury: Current evidence, challenges and a future direction. BRAIN & SPINE 2025; 5:104234. [PMID: 40177640 PMCID: PMC11964775 DOI: 10.1016/j.bas.2025.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Spinal Cord Injury (SCI) has devastating consequences for patients and their families. Over the last few decades, a renewed interest in the utilization of non-invasive and cost-effective therapeutic technologies in the management of patients with SCI has emerged. This includes stimulation with navigated transcranial magnetic stimulation (nTMS) in order to improve the outcome for these patients alongside with existing clinical tools. nTMS has shown encouraging preliminary results in both clinical assessment and rehabilitation (motor and pain) of patients with SCI. However, different protocols - stimulation parameters, length of treatment and combination with other modalities - and patient selection criteria hampered definitive conclusions. So far, none of these have been adapted in regular clinical practice. In this article, we provide an overview on different assessment and therapeutic strategies using nTMS and review their effectiveness.
Collapse
Affiliation(s)
- Josephine Jung
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Neurosciences Clinical Trials Unit, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Sabina Patel
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Azharul Khan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Alba Diaz Baamonde
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Yasir A. Chowdhury
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - David Bell
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Irfan Malik
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Nick Thomas
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Gordan Grahovac
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Aminul I. Ahmed
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - José Pedro Lavrador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
4
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Dominguez-Bajo A, Clotman F. Potential Roles of Specific Subclasses of Premotor Interneurons in Spinal Cord Function Recovery after Traumatic Spinal Cord Injury in Adults. Cells 2024; 13:652. [PMID: 38667267 PMCID: PMC11048910 DOI: 10.3390/cells13080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults. Current experimental therapies, including electrical stimulation, training, pharmacological treatments, or cell implantation, that have resulted in improvements in locomotor behavior rely on the modulation of the activity and connectivity of interneurons located in the surroundings of the lesion core for the formation of detour circuits. However, very few publications clarify the specific identity of these cells. In this work, we review the studies where premotor interneurons were able to create new intraspinal circuits after different kinds of traumatic spinal cord injury, highlighting the difficulties encountered by researchers, to classify these populations.
Collapse
Affiliation(s)
- Ana Dominguez-Bajo
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| |
Collapse
|