1
|
Wang H, Xu X, Lu H, Zheng Y, Shao L, Lu Z, Zhang Y, Song X. Identification of Potential Feature Genes in CRSwNP Using Bioinformatics Analysis and Machine Learning Strategies. J Inflamm Res 2024; 17:7573-7590. [PMID: 39464338 PMCID: PMC11512703 DOI: 10.2147/jir.s484914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The pathogenesis of CRSwNP is complex and not yet fully explored, so we aimed to identify the pivotal hub genes and associated pathways of CRSwNP, to facilitate the detection of novel diagnostic or therapeutic targets. Methods Utilizing two CRSwNP sequencing datasets from GEO, differential expression gene analysis, WGCNA, and three machine learning methods (LASSO, RF and SVM-RFE) were applied to screen for hub genes. A diagnostic model was then formulated utilizing hub genes, and the AUC was generated to evaluate the performance of the prognostic model and candidate genes. Hub genes were validated through the validation set and qPCR performed on normal mice and CRSwNP mouse model. Lastly, the ssGSEA algorithm was employed to assess the differences in immune infiltration levels. Results A total of 239 DEGs were identified, with 170 upregulated and 69 downregulated in CRSwNP. Enrichment analysis revealed that these DEGs were primarily enriched in pathways related to nucleocytoplasmic transport and HIF-1 signaling pathway. Data yielded by WGCNA analysis contained 183 DEGs. The application of three machine learning algorithms identified 11 hub genes. Following concurrent validation analysis with the validation set and qPCR performed after establishing the mouse model confirmed the overexpression of BTBD10, ERAP1, GIPC1, and PEX6 in CRSwNP. The examination of immune cell infiltration suggested that the infiltration rate of type 2 T helper cell and memory B cell experienced a decline in the CRSwNP group. Conversely, the infiltration rates of Immature dendritic cell and Effector memory CD8 T cell were positive correlation. Conclusion This study successfully identified and validated BTBD10, ERAP1, GIPC1, and PEX6 as potential novel diagnostic or therapeutic targets for CRSwNP, which offers a fresh perspective and a theoretical foundation for the diagnostic prediction and therapeutic approach to CRSwNP.
Collapse
Affiliation(s)
- Huikang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xinjun Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Haoran Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Yang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Liting Shao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Zhaoyang Lu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Yu Zhang
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xicheng Song
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| |
Collapse
|
2
|
Barazandeh M, Kriti D, Fickel J, Nislow C. The Addis Ababa Lions: Whole-Genome Sequencing of a Rare and Precious Population. Genome Biol Evol 2024; 16:evae021. [PMID: 38302110 PMCID: PMC10871700 DOI: 10.1093/gbe/evae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Lions are widely known as charismatic predators that once roamed across the globe, but their populations have been greatly affected by environmental factors and human activities over the last 150 yr. Of particular interest is the Addis Ababa lion population, which has been maintained in captivity at around 20 individuals for over 75 yr, while many wild African lion populations have become extinct. In order to understand the molecular features of this unique population, we conducted a whole-genome sequencing study on 15 Addis Ababa lions and detected 4.5 million distinct genomic variants compared with the reference African lion genome. Using functional annotation, we identified several genes with mutations that potentially impact various traits such as mane color, body size, reproduction, gastrointestinal functions, cardiovascular processes, and sensory perception. These findings offer valuable insights into the genetics of this threatened lion population.
Collapse
Affiliation(s)
- Marjan Barazandeh
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jörns Fickel
- Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|