1
|
Prusek A, Sikora B, Skubis-Sikora A, Czekaj P. Assessment of the toxic effect of benzalkonium chloride on human limbal stem cells. Sci Rep 2025; 15:12295. [PMID: 40210649 PMCID: PMC11986071 DOI: 10.1038/s41598-025-96919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Benzalkonium chloride (BAC) is the most commonly used preservative in eye drops. Unfortunately, it is potentially toxic and considered a leading cause of iatrogenic dry eye disease (DED) associated with local damage to the corneal epithelium. Corneal epithelium can be reconstituted thanks to the ability of limbal epithelial stem cells (LESCs) to self-renew, migrate, and differentiate, and can potentially be damaged by BAC. The aim of this study was to characterize the phenotype of human limbal stem cells (LSCs) isolated from the whole corneoscleral rims, and treated with BAC in vitro. The BAC dose was determined based on LSC viability assessment (MTT assay). The 48-h incubation period of LSCs with BAC was chosen to simulate long-term exposure of cells to preservative-containing eye drops. The cells were characterized by specific marker immunofluorescence staining; expression of genes related to proliferation, apoptosis, and inflammation (RT-qPCR); colony-forming ability and wound healing (scratch assay). Cell cycle stages were identified by flow cytometry. A BAC concentration of 0.0002% in the culture medium was chosen as an effective dose to inhibit LSC proliferation and migration and stimulate the expression of genes related to cell cycle, apoptosis, and inflammation. LSCs lose their clonogenic potential under the influence of BAC. It was concluded that benzalkonium chloride can develop toxic activity against limbal stem cells, limiting their regenerative potential.
Collapse
Affiliation(s)
- Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
2
|
Wang L, Nie X, Wei Y, Chen Q, Sun Y, Zhao X, Xu X, Liu W, Liang Q. 3D printed biomimetic bilayer limbal implants for regeneration of the corneal structure in limbal stem cell deficiency. Acta Biomater 2025; 193:157-170. [PMID: 39798638 DOI: 10.1016/j.actbio.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant. Encapsulated CECs and CSSCs maintained viability and proliferative activity in the bilayer limbal implant. In vivo, both CEC-loaded and CEC/CSSC-loaded hydrogel could repair the corneal surface in the LSCD model effectively. Notably, the corneal epithelial healing was faster, and corneal opacity and neovascularization were minimal in CEC/CSSC-loaded group. These findings highlight the feasibility of 3D printing in limbal construction, providing CEC/CSSC-loaded limbal implants as a treatment strategy for LSCD and corneal blindness. STATEMENT OF SIGNIFICANCE: This study aimed to enhance the long-term prognosis of limbal epithelial cell transplantation in patients with limbal stem cell deficiency by developing a 3D limbal implant that encapsulates corneal epithelial cells and limbal niche cells simultaneously. The 3D printed implant offers the advantages of mimicking the natural layered limbal structure and were found to enhance the regenerative capacity of corneal epithelial cells, suppress inflammation, and alleviate corneal scarring in vivo. This study highlights the importance of limbal microenvironment remodeling in the treatment of limbal stem cell deficiency and the potential of 3D printing in the treatment of corneal diseases.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China.
| |
Collapse
|
3
|
Jain M, Gupta N, Lohchab M, Gour A, Sangwan VS, Singh B. Corneal stromal changes following simple limbal epithelial transplantation on Scheimpflug densitometry: Early results. Indian J Ophthalmol 2025; 73:77-82. [PMID: 39186626 PMCID: PMC11831953 DOI: 10.4103/ijo.ijo_105_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 08/28/2024] Open
Abstract
CONTEXT Chemical injury to eyes causes limbal stem cell deficiency (LSCD), which leads to conjunctival epithelium and underlying stromal changes. Simple limbal epithelial transplant helps to restore corneal epithelium and corneal stromal clarity. These changes are documented in this prospective eye study. PURPOSE To report the changes in epithelial/stromal (E/S) reflectivity ratio and corneal stromal densitometry following simple limbal epithelial transplantation (SLET) in patients with unilateral chemical burn-induced LSCD. METHODS AND MATERIAL It is a prospective imaging study of cornea before and after SLET. Corneal densitometry with Pentacam and epithelial and stromal reflectivity on anterior segment optical coherence tomography were analyzed for five patients (n = 5 eyes), who underwent autologous SLET for unilateral chemical burn-induced LSCD. STATISTICAL ANALYSIS USED Mann-Whitney U-test and Pearson correlation. RESULTS A significant improvement in E/S reflectivity was noted at 1 month ( P < 0.05) after SLET, and this was maintained until the end of 6 months. The densitometry measurements decreased in the entire cornea at every level, that is, anterior, central, and posterior cornea. However, the values did not normalize till the last follow-up at 6 months. CONCLUSIONS A trend of normal corneal epithelization exists in eyes undergoing SLET. Densitometry at all the levels, the anterior, central, and posterior cornea, also decreases after SLET. SLET improves visual outcomes in LSCD eyes not only by epithelization but also by reducing stromal scarring.
Collapse
Affiliation(s)
- Mayur Jain
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Nidhi Gupta
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Monica Lohchab
- Eicher – Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Abha Gour
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher – Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Virender S Sangwan
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher – Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Bhupesh Singh
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
4
|
Zhu L, Chen C, Wu S, Guo H, Li L, Wang L, Liu D, Zhan Y, Du X, Liu J, Tan J, Huang Y, Mo K, Lan X, Ouyang H, Yuan J, Chen X, Ji J. PAX6-WNK2 Axis Governs Corneal Epithelial Homeostasis. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39453672 PMCID: PMC11512568 DOI: 10.1167/iovs.65.12.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Limbal stem/progenitor cells (LSCs) continuously proliferate and differentiate to replenish the corneal epithelium and play a vital role in corneal function and normal vision. A previous study revealed that paired box 6 (PAX6) is a master transcription factor involved in determining the fate of corneal epithelial cells (CECs). However, the molecular events downstream of PAX6 remain largely unknown. In this study, we aimed to clarify the regulation network of PAX6 in driving CEC differentiation. Methods An air-liquid culture system was used to differentiate LSCs into mature CECs. Specific targeting PAX6 short-hairpin RNAs were used to knock down PAX6 in LSC. RNA sequencing (RNA-seq) was used to analyze shPAX6-transfected CECs and CEC differentiation-associated genes to identify the potential downstream targets of PAX6. RNA-seq analysis, quantitative real-time PCR, and immunofluorescence staining were performed to clarify the function of WNK lysine deficient protein kinase 2 (WNK2), a downstream target of PAX6, and its relationship with corneal diseases. Results WNK2 expression increased during CEC differentiation and decreased upon PAX6 depletion. The distribution of WNK2 was specifically limited to the central corneal epithelium and suprabasal layer of the limbus. Knockdown of WNK2 impaired the expression of CEC-specific markers (KRT12, ALDH3A1, and CLU), disrupted the corneal differentiation process, and activated the terms of keratinization, inflammation, and cell proliferation, consistent with PAX6-depleted CEC and published microbial keratitis. Thus, aberrant expression of WNK2 was linked to corneal ulcers. Conclusions As a downstream target of PAX6, WNK2 plays an essential role in corneal epithelial cell differentiation and maintenance of corneal homeostasis.
Collapse
Affiliation(s)
- Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chaoqun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu Zhan
- Department of Experimental Research, Bioinformatics Platform, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Wu D, Chan KE, Lim BXH, Lim DKA, Wong WM, Chai C, Manotosh R, Lim CHL. Management of corneal neovascularization: Current and emerging therapeutic approaches. Indian J Ophthalmol 2024; 72:S354-S371. [PMID: 38648452 PMCID: PMC467007 DOI: 10.4103/ijo.ijo_3043_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 04/25/2024] Open
Abstract
Corneal neovascularization (CoNV) is a sight-threatening condition affecting an estimated 1.4 million people per year, and the incidence is expected to rise. It is a complication of corneal pathological diseases such as infective keratitis, chemical burn, corneal limbal stem cell deficiency, mechanical trauma, and immunological rejection after keratoplasties. CoNV occurs due to a disequilibrium in proangiogenic and antiangiogenic mediators, involving a complex system of molecular interactions. Treatment of CoNV is challenging, and no therapy thus far has been curative. Anti-inflammatory agents such as corticosteroids are the mainstay of treatment due to their accessibility and well-studied safety profile. However, they have limited effectiveness and are unable to regress more mature neovascularization. With the advent of advanced imaging modalities and an expanding understanding of its pathogenesis, contemporary treatments targeting a wide array of molecular mechanisms and surgical options are gaining traction. This review aims to summarize evidence regarding conventional and emerging therapeutic options for CoNV.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Hospital, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Blanche Xiao Hong Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dawn Ka-Ann Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wendy Meihua Wong
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charmaine Chai
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ray Manotosh
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chris Hong Long Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Singapore Eye Research Institute, Singapore
| |
Collapse
|
6
|
Singh VK, Kethiri AR, Pingali T, Sahoo A, Salman M, Koduri MA, Prasad D, Bokara KK, Basu S, Singh V. Development and validation of a reliable rabbit model of limbal stem cell deficiency by mechanical debridement using an ophthalmic burr. Exp Eye Res 2023; 236:109667. [PMID: 37758156 DOI: 10.1016/j.exer.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Tejaswini Pingali
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Abhishek Sahoo
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mohd Salman
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Wang L, Xu X, Chen Q, Wei Y, Wei Z, Jin ZB, Liang Q. Extracellular Vesicle MicroRNAs From Corneal Stromal Stem Cell Enhance Stemness of Limbal Epithelial Stem Cells by Targeting the Notch Pathway. Invest Ophthalmol Vis Sci 2023; 64:42. [PMID: 37768272 PMCID: PMC10541724 DOI: 10.1167/iovs.64.12.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose The limbal niche supports the self-renewal of limbal epithelial stem cells (LESCs). The corneal stromal stem cell (CSSC) is an important component in the niche that regulates the LESC phenotype. However, the intercellular communication between LESCs and CSSCs has yet to be elucidated. Methods A traditional two-dimensional (2D) system, a direct three-dimensional (3D) system, and an indirect 3D coculture system of LESCs and CSSCs were used to elucidate the paracrine pathway effect of CSSCs on LESCs. To reveal the impact of CSSC derived extracellular vesicles (CSSC-EVs) on LESCs, GW4869 and CSSC-EVs were added separately to the LESC culture medium. The outgrowth rate, cell density, differentiation, and stemness maintenance were compared among these methods. The miRNAs in the CSSC-EVs were sequenced, and the targeted Notch pathway was further confirmed by RT‒qPCR and Western blotting. Results Compared with 2D culture, both the direct and indirect 3D coculture systems yielded a higher outgrowth rate and expression of stem cell markers of LESCs. The phenotypes of LESCs cultivated using the two coculture approaches were also comparable. Nevertheless, GW4869 inhibited the effect of CSSCs on LESCs, and the addition of CSSC-EVs to the 2D culture system could increase cell density, and the proportion of p63αbright cells, which indicated that CSSC-EVs were crucial in regulating LESCs. Furthermore, the EV-AlixKD with reduced miRNA partly lost its regulating function. The abundant miRNAs in CSSC-EVs, such as hsa-miR-663b, hsa-miR-16-5p, and hsa-miR-1290, target the Notch pathway. The LESCs transfected with miR-663b had higher p63 expression via downregulating of the Notch pathway. Conclusions CSSC-EV played an important role in promoting LESC proliferation and stemness maintenance by targeting Notch signaling via miRNAs, which will increase our understanding of the limbal niche and provide a potential new approach for LESC culture and the treatment of corneal epithelial disorders.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|