1
|
Baumgartner A, Planinšek O. Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution. Pharmaceutics 2024; 16:1060. [PMID: 39204405 PMCID: PMC11359594 DOI: 10.3390/pharmaceutics16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption. Rotary evaporation was used to formulate solid dispersions with different amounts of fenofibrate, which were evaluated for solid state properties and drug release. The solid dispersion with 30% fenofibrate showed no signs of crystallinity and had a significantly improved dissolution rate, making it the optimal sample for formulation or orodispersible tablets. The aim was to produce tablets with minimal amounts of additional excipients while achieving a drug release profile similar to the uncompressed solid dispersion. The compressed formulations met the requirements for orodispersible tablets in terms of disintegration time, and the drug release from best formulation approximated the profile of uncompressed solid dispersion. Future research should focus on reducing the disintegration time and tablet size to enhance patient acceptability further.
Collapse
Affiliation(s)
- Ana Baumgartner
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Baumgartner A, Dobaj N, Planinšek O. Investigating the Influence of Processing Conditions on Dissolution and Physical Stability of Solid Dispersions with Fenofibrate and Mesoporous Silica. Pharmaceutics 2024; 16:575. [PMID: 38794237 PMCID: PMC11125193 DOI: 10.3390/pharmaceutics16050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The study aimed to enhance the solubility of the poorly water-soluble drug, fenofibrate, by loading it onto mesoporous silica, forming amorphous solid dispersions. Solid dispersions with 30% fenofibrate were prepared using the solvent evaporation method with three solvents (ethyl acetate, acetone, and isopropanol) at different temperatures (40 °C, boiling point temperature). Various characteristics, including solid-state properties, particle morphology, and drug release, were evaluated by different methods and compared to a pure drug and a physical mixture of fenofibrate and silica. Results revealed that higher solvent temperatures facilitated complete amorphization and rapid drug release, with solvent choice having a lesser impact. The optimal conditions for preparation were identified as ethyl acetate at boiling point temperature. Solid dispersions with different fenofibrate amounts (20%, 25%, 35%) were prepared under these conditions. All formulations were fully amorphous, and their dissolution profiles were comparable to the formulation with 30% fenofibrate. Stability assessments after 8 weeks at 40 °C and 75% relative humidity indicated that formulations prepared with ethyl acetate and at 40 °C were physically stable. Interestingly, some formulations showed improved dissolution profiles compared to initial tests. In conclusion, mesoporous silica-based solid dispersions effectively improved fenofibrate dissolution and demonstrated good physical stability if prepared under appropriate conditions.
Collapse
Affiliation(s)
- Ana Baumgartner
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia (O.P.)
| | | | | |
Collapse
|
3
|
Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim SNAL, Aulifa DL. Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release. Int J Nanomedicine 2024; 19:281-305. [PMID: 38229702 PMCID: PMC10790662 DOI: 10.2147/ijn.s449159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Central Java, 57126, Indonesia
| | - Yuda Prasetya Nugraha
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ridhatul Qaivani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Siti Nazila Awaliyyah Lukmanul Hakim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
4
|
Skorup I, Valentino G, Aleandri S, Gelli R, Ganguin AA, Felli E, Selicean SE, Marxer RA, Teworte S, Lucić A, Gracia-Sancho J, Berzigotti A, Ridi F, Luciani P. Polyenylphosphatidylcholine as bioactive excipient in tablets for the treatment of liver fibrosis. Int J Pharm 2023; 646:123473. [PMID: 37788730 DOI: 10.1016/j.ijpharm.2023.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Liver fibrosis is a condition characterized by the accumulation of extracellular matrix (ECM) arising from the myofibroblastic transdifferentiation of hepatic stellate cells (HSCs) occurring as the natural response to liver damage. To date, no pharmacological treatments have been specifically approved for liver fibrosis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs. However, unsaturated phospholipids' properties pose a constant challenge to the development of tablets as preferred patient-centric dosage form. Profiting from the advantageous physical properties of the PPCs-rich Soluthin® S 80 M, we developed a tablet formulation incorporating 70% w/w of this bioactive lipid. Tablets were characterized via X-ray powder diffraction, thermogravimetry, and Raman confocal imaging, and passed the major compendial requirements. To mimic physiological absorption after oral intake, phospholipids extracted from tablets were reconstituted as protein-free chylomicron (PFC)-like emulsions and tested on the fibrogenic human HSC line LX-2 and on primary cirrhotic rat hepatic stellate cells (PRHSC). Lipids extracted from tablets and reconstituted in buffer or as PFC-like emulsions exerted the same antifibrotic effect on both activated LX-2 and PRHSCs as observed with plain S 80 M liposomes, showing that the manufacturing process did not interfere with the bioactivity of PPCs.
Collapse
Affiliation(s)
- Ivo Skorup
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Gina Valentino
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Aymar Abel Ganguin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Sonia Emilia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Rosanne Angela Marxer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sarah Teworte
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ana Lucić
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland; Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Stasiłowicz-Krzemień A, Szulc P, Cielecka-Piontek J. Co-Dispersion Delivery Systems with Solubilizing Carriers Improving the Solubility and Permeability of Cannabinoids (Cannabidiol, Cannabidiolic Acid, and Cannabichromene) from Cannabis sativa (Henola Variety) Inflorescences. Pharmaceutics 2023; 15:2280. [PMID: 37765249 PMCID: PMC10537421 DOI: 10.3390/pharmaceutics15092280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) and magnesium aluminometasilicate (Neusilin US2) to improve solubility and permeability. Recognizing the potential therapeutic benefits arising from the entourage effect, we decided to work with an extract instead of isolated cannabinoids. Cannabis sativa inflorescences (Henola variety) with a confirming neuroprotective activity were subjected to dynamic supercritical CO2 (scCO2) extraction and next they were combined with carriers (1:1 mass ratio) to prepare the co-dispersion cannabinoid delivery systems (HiE). In vitro dissolution studies were conducted to evaluate the solubility of CBD, CBDA, and CBC in various media (pH 1.2, 6.8, fasted, and fed state simulated intestinal fluid). The HiE-Soluplus delivery systems consistently demonstrated the highest dissolution rate of cannabinoids. Additionally, HiE-Soluplus exhibited the highest permeability coefficients for cannabinoids in gastrointestinal tract conditions than it was during the permeability studies using model PAMPA GIT. All three cannabinoids exhibited promising blood-brain barrier (BBB) permeability (Papp higher than 4.0 × 10-6 cm/s), suggesting their potential to effectively cross into the central nervous system. The improved solubility and permeability of cannabinoids from the HiE-Soluplus delivery system hold promise for enhancement in their bioavailability.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
6
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
7
|
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023; 15:2116. [PMID: 37631330 PMCID: PMC10459848 DOI: 10.3390/pharmaceutics15082116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of active pharmaceutical ingredients (APIs) with low water solubility has experienced a significant increase in recent years. These APIs present challenges in formulation, particularly for oral dosage forms, despite their considerable therapeutic potential. Therefore, the improvement of solubility has become a major concern for pharmaceutical enterprises to increase the bioavailability of APIs. A promising formulation approach that can effectively improve the dissolution profile and the bioavailability of poorly water-soluble drugs is the utilization of amorphous systems. Numerous formulation methods have been developed to enhance poorly water-soluble drugs through amorphization systems, including co-amorphous formulations, amorphous solid dispersions (ASDs), and the use of mesoporous silica as a carrier. Furthermore, the successful enhancement of certain drugs with poor aqueous solubility through amorphization has led to their incorporation into various commercially available preparations, such as ASDs, where the crystalline structure of APIs is transformed into an amorphous state within a hydrophilic matrix. A novel approach, known as ternary solid dispersions (TSDs), has emerged to address the solubility and bioavailability challenges associated with amorphous drugs. Meanwhile, the introduction of a third component in the ASD and co-amorphous systems has demonstrated the potential to improve performance in terms of solubility, physical stability, and processability. This comprehensive review discusses the preparation and characterization of poorly water-soluble drugs in ternary solid dispersions and their mechanisms of drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Eli Lailasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ellen Nathania Yunita
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Rizqa Nurul Aulia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| | - Laila Subra
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| |
Collapse
|
8
|
Trzeciak K, Wielgus E, Kaźmierski S, Pawlak T, Potrzebowski MJ. Amorphization of Ethenzamide and Ethenzamide Cocrystals-A Case Study of Single and Binary Systems Forming Low-Melting Eutectic Phases Loaded on/in Silica Gel. Pharmaceutics 2023; 15:pharmaceutics15041234. [PMID: 37111719 PMCID: PMC10142476 DOI: 10.3390/pharmaceutics15041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The applicability of different solvent-free approaches leading to the amorphization of active pharmaceutical ingredients (APIs) was tested. Ethenzamide (ET), an analgesic and anti-inflammatory drug, and two ethenzamide cocrystals with glutaric acid (GLU) and ethyl malonic acid (EMA) as coformers were used as pharmaceutical models. Calcinated and thermally untreated silica gel was applied as an amorphous reagent. Three methods were used to prepare the samples: manual physical mixing, melting, and grinding in a ball mill. The ET:GLU and ET:EMA cocrystals forming low-melting eutectic phases were selected as the best candidates for testing amorphization by thermal treatment. The progress and degree of amorphousness were determined using instrumental techniques: solid-state NMR spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. In each case, the API amorphization was complete and the process was irreversible. A comparative analysis of the dissolution profiles showed that the dissolution kinetics for each sample are significantly different. The nature and mechanism of this distinction are discussed.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
9
|
Lin Z, Zheng K, Azad MA, Davé RN. Preparation of Free-Flowing Spray-Dried Amorphous Composites Using Neusilin ®. AAPS PharmSciTech 2023; 24:51. [PMID: 36703032 DOI: 10.1208/s12249-023-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
A highly porous additive, Neusilin®, with high adsorption capability is investigated to improve bulk properties, hence processability of spray-dried amorphous solid dispersions (ASDs). Griseofulvin (GF) is applied as a model BCS class 2 drug in ASDs. Two grades of Neusilin®, US2 (coarser) and UFL2 (finer), were used as additives to produce spray-dried amorphous composite (AC) powders, and their performance was compared with the resulting ASDs without added Neusilin®. The resulting AC powders that included Neusilin® had greatly enhanced flowability (flow function coefficient (FFC) > 10) comparable to larger particles (100 μm) yet had finer particle size (< 50 μm), hence retaining the advantage of fast dissolution rate of finer sizes. Dissolution results demonstrated that achieved GF supersaturation for AC powders with Neusilin® was as high as 3 times that of crystalline GF concentration and was achieved within 30 min. In addition, 80% of drug was released within 4 min. The flowability improvement for AC powders with Neusilin® was more significant as compared to spray-dried ASDs without Neusilin®. Thus, the role of Neusilin® in flowability improvement was evident, considering that spray-dried AC with Neusilin® UFL2 has higher FFC than ASDs having a similar size. Lastly, the AC powders retained a fully amorphous state of GF after 3-month ambient storage. The overall results conveyed that the improved flowability and dissolution rate could outweigh the loss of drug loading resulted by addition of Neusilin®.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kai Zheng
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Mohammad A Azad
- Chemical, Biological and Bioengineering Department, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
10
|
Trivedi R, Chatterjee B, Kalave S, Pandya M. Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review. Curr Drug Deliv 2023; 20:694-707. [PMID: 35899950 DOI: 10.2174/1567201819666220721111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rishab Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Mrugank Pandya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
11
|
Kim SS, Castillo C, Sayedahmed M, Davé RN. Reduced Fine API Agglomeration After Dry Coating for Enhanced Blend Uniformity and Processability of Low Drug Loaded Blends. Pharm Res 2022; 39:3155-3174. [PMID: 35882741 DOI: 10.1007/s11095-022-03343-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The impact of dry coating on reduced API agglomeration remains underexplored. Therefore, this work quantified fine cohesive API agglomeration reduction through dry coating and its impact on enhanced blend uniformity and processability, i.e., flowability and bulk density of multi-component blends API loading as low as 1 wt%. METHODS The impact of dry coating with two different types and amounts of silica was assessed on cohesion, agglomeration, flowability, bulk density, wettability, and surface energy of fine milled ibuprofen (~ 10 µm). API agglomeration, measured using Gradis/QicPic employing gentler gravity-based dispersion, resulted in excellent size resolution. Multi-component blends with fine-sized excipients, selected for reduced segregation potential, were tested for bulk density, cohesion, flowability, and blend content uniformity. Tablets formed using these blends were tested for tensile strength and dissolution. RESULT All dry coated ibuprofen powders exhibited dramatic agglomeration reduction, corroborated by corresponding decreased cohesion, unconfined yield strength, and improved flowability, regardless of the type and amount of silica coating. Their blends exhibited profound enhancement in flowability and bulk density even at low API loadings, as well as the content uniformity for the lowest drug loading. Moreover, hydrophobic silica coating improved drug dissolution rate without appreciably reducing tablet tensile strength. CONCLUSION The dry coating based reduced agglomeration of fine APIs for all three low drug loadings improved overall blend properties (uniformity, flowability, API release rate) due to the synergistic impact of a minute amount of silica (0.007 wt %), potentially enabling direct compression tableting and aiding manufacturing of other forms of solid dosing.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Muhammad Sayedahmed
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
12
|
Okada K, Hayashi Y, Tsuji T, Onuki Y. Low-Field NMR to Characterize the Crystalline State of Ibuprofen Confined in Ordered or Nonordered Mesoporous Silica. Chem Pharm Bull (Tokyo) 2022; 70:550-557. [DOI: 10.1248/cpb.c22-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| | - Yoshihiro Hayashi
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Takahiro Tsuji
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| |
Collapse
|
13
|
A Comparative Study of the Pharmaceutical Properties between Amorphous Drugs Loaded-Mesoporous Silica and Pure Amorphous Drugs Prepared by Solvent Evaporation. Pharmaceuticals (Basel) 2022; 15:ph15060730. [PMID: 35745649 PMCID: PMC9228546 DOI: 10.3390/ph15060730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
The formulation of poorly water-soluble drugs is one of the main challenges in the pharmaceutical industry, especially in the development of oral dosage forms. Meanwhile, there is an increase in the number of poorly soluble drugs that have been discovered as new chemical entities. It was also reported that the physical transformation of a drug from a crystalline form into an amorphous state could be used to increase its solubility. Therefore, this study aims to evaluate the pharmaceutical properties of amorphous drug loaded-mesoporous silica (MPS) and pure amorphous drugs. Ritonavir (RTV) was used as a model of a poorly water-soluble drug due to its low recrystallization tendency. RTV loaded-MPS (RTV/MPS) and RTV amorphous were prepared using the solvent evaporation method. Based on observation, a halo pattern in the powder X-ray diffraction pattern and a single glass transition (Tg) in the modulated differential scanning calorimetry (MDSC) curve was discovered in RTV amorphous, indicating its amorphization. The Tg was not detected in RTV/MPS, which showed that the loading RTV was completed. The solid-state NMR and FT-IR spectroscopy also showed the interaction between RTV and the surface of MPS in the mesopores. The high supersaturation of RTV was not achieved for both RTV/MPS and the amorphous state due to its strong interaction with the surface of MPS and was not properly dispersed in the medium, respectively. In the dissolution test, the molecular dispersion of RTV within MPS caused rapid dissolution at the beginning, while the amorphous showed a low rate due to its agglomeration. The stability examination showed that the loading process significantly improved the physical and chemical stability of RTV amorphous. These results indicated that the pharmaceutical properties of amorphous drugs could be improved by loaded-MPS.
Collapse
|
14
|
Characterization of Drugs with Good Glass Formers in Loaded-Mesoporous Silica and Its Theoretical Value Relevance with Mesopores Surface and Pore-Filling Capacity. Pharmaceuticals (Basel) 2022; 15:ph15010093. [PMID: 35056149 PMCID: PMC8778383 DOI: 10.3390/ph15010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
The incorporation of a drug into mesoporous silica (MPS) is a promising strategy to stabilize its amorphous form. However, the drug within MPS has shown incomplete release, despite a supersaturated solution being generated. This indicates the determination of maximum drug loading in MPS below what is experimentally necessary to maximize the drug doses in the system. Therefore, this study aimed to characterize the drugs with good glass former loaded-mesoporous silica, determine the maximum drug loading, and compare its theoretical value relevance to monolayer covering the mesoporous (MCM) surface, as well as pore-filling capacity (PFC). Solvent evaporation and melt methods were used to load each drug into MPS. In addition, the glass transition of ritonavir (RTV) and cyclosporine A (CYP), as well as the melting peak of indomethacin (IDM) and saccharin (SAC) in mesoporous silica, were not discovered in the modulated differential scanning calorimetry (MDSC) curve, demonstrating that each drug was successfully incorporated into the mesopores. The amorphization of RTV-loaded MPS (RTV/MPS), CYP-loaded MPS (CYP/MPS), and IDM-loaded MPS (IDM/MPS) were confirmed as a halo pattern in powder X-ray diffraction measurements and a single glass transition event in the MDSC curve. Additionally, the good glass formers, nanoconfinement effect of MPS and silica surface interaction contributed to the amorphization of RTV, CYP and IDM within MPS. Meanwhile, the crystallization of SAC was observed in SAC-loaded MPS (SAC/MPS) due to its weak silica surface interaction and high recrystallization tendency. The maximum loading amount of RTV/MPS was experimentally close to the theoretical amount of MCM, showing monomolecular adsorption of RTV on the silica surface. On the other hand, the maximum loading amount of CYP/MPS and IDM/MPS was experimentally lower than the theoretical amount of MCM due to the lack of surface interaction. However, neither CYP or IDM occupied the entire silica surface, even though some drugs were adsorbed on the MPS surface. Moreover, the maximum loading amount of SAC/MPS was experimentally close to the theoretical amount of PFC, suggesting the multilayers of SAC within the MPS. Therefore, this study demonstrates that the characterization of drugs within MPS, such as molecular size and interaction of drug-silica surface, affects the loading efficiency of drugs within MPS that influence its relevance with the theoretical value of drugs.
Collapse
|
15
|
Lalan M, Shah P, Kadam R, Patel H. Amalgam of ternary solid dispersion and P-gp efflux inhibition in development of colon-targeted tablets of rifaximin. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_21_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Koch N, Jennotte O, Ziemons E, Boussard G, Lechanteur A, Evrard B. Influence of API physico-chemical properties on amorphization capacity of several mesoporous silica loading methods. Int J Pharm 2021; 613:121372. [PMID: 34906649 DOI: 10.1016/j.ijpharm.2021.121372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
The objective of this work was to evaluate the impact of physico-chemical properties of pharmaceutical drugs on the optimal mesoporous silica loading methods. Indeed, a good combination between drug and loading process has to be studied to promote the deepest penetration of the drug inside the mesopores, allowing high drug amorphization. Six molecules, namely lidocaine and its hydrochloride, ibuprofen, ketoprofen, artemether and miconazole, with different physico-chemical properties (the ionized character, the acid-base character, the HBDA number, the solubility in sc-CO2 and the behavior under subcritical CO2) were used to produce drug-silica formulations. Different impregnation processes (physical mixing, melting, wetting, sc-CO2 and subcritical CO2 impregnations) have been compared for each drug, in terms of drug recovery and crystallinity. Formulations showed drug percentage close to 100% except for supercritical soluble drug formulations impregnated by using sc-CO2. However, the basic drug character provided less or no drug loss during impregnation. Processing insoluble sc-CO2 molecule under supercritical conditions led to less crystallinity than the correspondent physical mixture suggesting an interesting repulsive effect that forces the drug penetration within the mesopores. Besides, it has been also highlighted that the HBDA number is not sufficient to predict the final drug loading. Melting methods have high interest considering the drugs tested and subcritical CO2 could increase the loading, especially for drugs with high molten viscosity. This study showed that a plethora of loading methods can be used to provide high drug loaded MS formulations with a wide choice of equipment.
Collapse
Affiliation(s)
- N Koch
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium.
| | - O Jennotte
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - E Ziemons
- University of Liège, Laboratory of Pharmaceutical Analytical Chemistry Laboratory, Vibra-Santé Hub, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - G Boussard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - A Lechanteur
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - B Evrard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| |
Collapse
|
17
|
The method of random balance for studying the influence of excipients quantities on technological parameters of tablets based on Origanum vulgare L. dry extract. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim. The aim of the research was to study the influence of excipients amount on the technological parameters of the compression mixture and tablets based on dry extract of Origanum vulgare L. herb using the method of random balance.
Materials and methods. Objects of the study – Origanum vulgare L. herb dry extract, 8 excipients that have been studied at two quantitative levels. The tablets were prepared by direct compression method. The formulations were designed according to the method of random balance. The technological parameters of the compression mixture and tablets based on Origanum vulgare L. herb dry extract have been studied as a function of quantitative factors: silicon, magnesium carbonate basic, dioxide magnesium aluminometasilicate (Neusilin S1®), isomalt (GalenIQ™720), F-melt® Type C (co-spray dried excipients), sucralose, berry flavor and citric acid.
Results and discussion. The increase in the amount of Neusilin S1®, GalenIQ™720 and F-melt®, and the decrease in the amount of magnesium carbonate basic and silicon dioxide improved the flowability expressed by the Hausner ratio. Results of bulk density and tapped density of the compression mixture depended on the quantities of GalenIQ™720 and F-melt®. All formulations of the prepared tablets had the rapid disintegration and ranging from 6 to 15 minutes. Resistance for crushing and friability tablets’ were improved with a decrease in the amount of silicon dioxide and increase in the amount of Neusilin S1®, F-melt® and sucralose. Higher resistance to moisture of tablets based on Origanum vulgare L. dry extract was obtained by using Neusilin S1®, F-melt® and sucralose on the upper levels.
Conclusions. The tablets based on Origanum vulgare L. herb dry extract were successfully manufactured by direct compression method. The random balance method enabled us to identify the most significant quantitative factors to optimize their composition in the tablets based on the dry extract of Origanum vulgare L. herb.
Collapse
|
18
|
Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. Int J Pharm 2021; 600:120492. [PMID: 33744448 DOI: 10.1016/j.ijpharm.2021.120492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
In this study, the molecular state of ritonavir (RTN)-saccharin (SAC) coamorphous incorporated into mesoporous silica by solvent evaporation and the effect of SAC on the RTN dissolution from mesopores were investigated. The amorphization of RTN-SAC was confirmed as a halo pattern in powder X-ray diffraction measurements and a single glass transition event in the modulated differential scanning calorimetry (MDSC) curve. 13C solid-state NMR spectroscopy revealed a hydrogen bond between the thiazole nitrogen of RTN and the amine proton of SAC. The glass transition of the RTN-SAC coamorphous in mesoporous silica was not found in the MDSC curve, indicating that RTN and SAC were monomolecularly incorporated into the mesopores. Solid-state NMR measurements suggested that the co-incorporation of SAC into the mesopores decreased the local mobility of the thiazole group of RTN via hydrogen bond formation. The RTN-SAC 1:1 coamorphous in mesoporous silica retained the X-ray halo-patterns after 30 d of storage, even under high temperature and humidity conditions. In the dissolution test, the RTN-SAC 1:1 coamorphous in mesoporous silica maintained RTN supersaturation for a longer time than the RTN amorphous in mesoporous silica. This study demonstrated that the drug-coformer interaction within mesoporous silica can significantly improve drug dissolution.
Collapse
|
19
|
Dangre PV, Tattu AD, Borikar SP, Surana SJ, Chalikwar SS. Development and statistical optimization of alginate-Neusilin US2 micro-composite beads to elicit gastric stability and sustained action of hesperidin. Int J Biol Macromol 2021; 171:514-526. [PMID: 33428954 DOI: 10.1016/j.ijbiomac.2021.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023]
Abstract
The Alginate-Neusilin US2 micro-composite (MC) beads were fabricated and optimized for oral delivery of hesperidin (HES). A 32 full factorial design encompassing independent variables (factors) such as the concentration of sodium alginate (X1), and Neusilin US2 (X2) and dependant variables (response) such as particle size (Y1), entrapment efficiency (Y2), and swelling degree (Y3). Nine batches were prepared by formulation design employing statistical software JMP 13.2.1. The multiple regression analysis (MLRA) was carried to explore the influence of factor over responses. Further, a prediction profiler was used to trace the optimum concentration of factors based on desirable responses. The optimized beads (OF) were characterized for their morphology and size by motic microscopy and scanning electron microscopy. In vitro release, kinetic studies were performed in simulated gastric and intestinal fluids. In vivo pharmacokinetic studies revealed better absorption of HES from optimized beads (OF) compared to HES suspension which could be due to the prevention of acidic degradation of HES in the stomach. The estimated shelf life of OF formulation was found to be 3.86 years suggested better stability after fabrication. In a nutshell, the developed micro-composite beads of HES could be a better alternative for promising oral sustained delivery of HES.
Collapse
Affiliation(s)
- Pankaj V Dangre
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule 425 405, India
| | - Avinash D Tattu
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule 425 405, India
| | - Sachin P Borikar
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule 425 405, India
| | - Sanjay J Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule 425 405, India
| | - Shailesh S Chalikwar
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule 425 405, India.
| |
Collapse
|
20
|
Kurhajec S, Kostelanská K, Pavloková S, Vetchý D, Wolaschka T, Gajdziok J, Franc A. Stabilized antioxidative plant extracts formulated by liquisolid technique. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Rana H, Hasan H, Gohel M, Thakkar V, Gandhi T. Systematic Development of Bicalutamide Immediate Release Pellets Using Aeroperl and Non-MCC Extruder Aid. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885515999200424082315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The Microcrystalline Cellulose is called as a gold standard for the manufacture
of pellets. The poor disintegration leads to incomplete drug release that restricts the use of
MCC in the immediate-release formulation.
Objective:
The present work aims to explore non-MCC extruder aid for pellet formulation and
solubility modulation potential of Aeroperl® 300 Pharma.
Methods:
Bicalutamide (BCL) was selected as a model BCS class-II drug. The solubility of BCL
was assessed in different vehicles such as polyethylene glycol, propylene glycol, and Tween by
carrying out phase solubility study. The suitable vehicle was selected based on the higher solubility
of BCL. The vehicle was further adsorbed on newer adsorbent Aeroperl® 300 Pharma to formulate
liquisolid granules. The liquisolid granules were further incorporated into the pellet using mannitol
and microcrystalline cellulose as an extruder aid. Box-Behnken design was adopted for the optimization
of formulation considering MCC: mannitol ratio, the concentration of HPMC and spheronizer
speed as independent factors whereas drug release at 30 min, disintegration time and aspect ratio were
selected as dependent variables. The pellets were evaluated for different evaluation parameters.
Results:
Propylene glycol was selected for the formulation of liquisolid technique based on the
results of the phase solubility study. Propylene glycol containing BCL was adsorbed on Aeroperl
300 Pharma. The optimized batch was selected exploring the Design-Expert software by considering
the limits of different responses. Pellet had excellent flowability. Friability was found to be
within the range (<1%). Pellets were found to be spherical and had pores on the surfaces.
Conclusion:
Liquisolid granules containing newer solubilizer Aeroperl was found to be a promising
approach for the improvement in the solubility of the drug. The use of mannitol with MCC has a
profound effect on disintegration time, without altering flow property and other parameters. No
patents were reported on the combination of Bicalutamide, mannitol and Aeroperl. The critical finding
of the present work is to use mannitol as an extruder aid to fasten the disintegration leads to
complete drug release within a short period of time. Aeroperl and Mannitol, MCC: mannitol ratio,
the concentration of HPMC and spheronizer speed were found to be significant and had the potential
effect in pellet formulation.
Collapse
Affiliation(s)
- Hardik Rana
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Hussain Hasan
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Mukesh Gohel
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Vaishali Thakkar
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Tejal Gandhi
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| |
Collapse
|
22
|
Garbera K, Ciura K, Sawicki W. A Novel Approach to Optimize Hot Melt Impregnation in Terms of Amorphization Efficiency. Int J Mol Sci 2020; 21:E4032. [PMID: 32512914 PMCID: PMC7312772 DOI: 10.3390/ijms21114032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, an innovative methodology to optimize amorphization during the hot melt impregnation (HMI) process was proposed. The novelty of this report revolves around the use of thermal analysis in combination with design of experiments (DoEs) to reduce residual crystallinity during the HMI process. As a model formulation, a mixture of ibuprofen (IBU) and Neusilin was used. The main aim of the study was to identify the critical process parameters of HMI and determine their optimal values to assure a robust impregnation process and possibly the highest possible amorphization rate of IBU. In order to realize this, a DoE approach was proposed based on a face-centered composite design involving three factors. The IBU/Neusilin ratio, the feeding rate, and the screw speed were considered as variables, while the residual crystallinity level of IBU, determined using differential scanning calorimetry (DSC), was measured as the response. Additionally, the stability of IBU under HMI was analyzed using high-performance liquid chromatography to estimate the extent of potential degradation. In order to verify the correctness of the DoE model, tested extrudates were manufactured by HMI and the obtained extrudates were thoroughly examined using scanning electron micrography, X-ray powder diffraction, and DSC.
Collapse
Affiliation(s)
- Kamil Garbera
- Formulation Department, Tarchomin Pharmaceutical Works “Polfa” S.A., Fleminga 2, 03-176 Warszawa, Poland;
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Wiesław Sawicki
- Department of Physical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
23
|
Yeo S, An J, Park C, Kim D, Lee J. Design and Characterization of Phosphatidylcholine-Based Solid Dispersions of Aprepitant for Enhanced Solubility and Dissolution. Pharmaceutics 2020; 12:pharmaceutics12050407. [PMID: 32365589 PMCID: PMC7285057 DOI: 10.3390/pharmaceutics12050407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.
Collapse
|
24
|
Ullah H, Badshah M, Correia A, Wahid F, Santos HA, Khan T. Functionalized Bacterial Cellulose Microparticles for Drug Delivery in Biomedical Applications. Curr Pharm Des 2019; 25:3692-3701. [DOI: 10.2174/1381612825666191011103851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
Background:
Bacterial cellulose (BC) has recently attained greater interest in various research fields,
including drug delivery for biomedical applications. BC has been studied in the field of drug delivery, such as
tablet coating, controlled release systems and prodrug design.
Objective:
In the current work, we tested the feasibility of BC as a drug carrier in microparticulate form for potential
pharmaceutical and biomedical applications.
Method :
For this purpose, drug-loaded BC microparticles were prepared by simple grinding and injection
moulding method through regeneration. Model drugs, i.e., cloxacillin (CLX) and cefuroxime (CEF) sodium salts
were loaded in these microparticles to assess their drug loading and release properties. The prepared microparticles
were evaluated in terms of particle shapes, drug loading efficiency, physical state of the loaded drug, drug
release behaviour and antibacterial properties.
Results:
The BC microparticles were converted to partially amorphous state after regeneration. Moreover, the
loaded drug was transformed into the amorphous state. The results of scanning electron microscopy (SEM)
showed that microparticles had almost spherical shape with a size of ca. 350-400 μm. The microparticles treated
with higher drug concentration (3%) exhibited higher drug loading. Keeping drug concertation constant, i.e., 1%,
the regenerated BC (RBC) microparticles showed higher drug loading (i.e., 37.57±0.22% for CEF and
33.36±3.03% for CLX) as compared to as-synthesized BC (ABC) microparticles (i.e., 9.46±1.30% for CEF and
9.84±1.26% for CLX). All formulations showed immediate drug release, wherein more than 85% drug was released
in the initial 30 min. Moreover, such microparticles exhibited good antibacterial activity with larger zones
of inhibition for drug loaded RBC microparticles as compared to corresponding ABC microparticles.
Conclusion :
Drug loaded BC microparticles with immediate release behaviour and antibacterial activity were
fabricated. Such functionalized microparticles may find potential biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Munair Badshah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI˗00014 Helsinki, Finland
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI˗00014 Helsinki, Finland
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
25
|
Fast release of liquid antisolvent precipitated fenofibrate at high drug loading from biocompatible thin films. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Cunha L, Rosa da Costa AM, Lourenço JP, Buttini F, Grenha A. Spray-dried fucoidan microparticles for pulmonary delivery of antitubercular drugs. J Microencapsul 2018; 35:392-405. [PMID: 30112917 DOI: 10.1080/02652048.2018.1513089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Pulmonary tuberculosis accounts for 80% of cases and the delivery of antitubercular drugs into the lungs allows targeting the infected organ and, possibly, reducing systemic drug toxicity. This work aimed at using fucoidan as matrix of inhalable microparticles that associate two first-line antitubercular drugs, for an application in pulmonary tuberculosis therapy. Fucoidan is composed of fucose and sulphated sugar residues, moieties described as being recognised by surface receptors of alveolar macrophages, which host mycobacteria. Inhalable fucoidan microparticles loaded with antitubercular drugs were successfully produced with high association efficiencies of either isoniazid (95%) or rifabutin (81%). The microparticles evidenced no cytotoxicity on lung epithelial cells (A549). However, rifabutin-loaded microparticles showed a certain degree of toxicity on macrophage-like cells (THP-1) at the highest tested concentration (1 mg/mL). Furthermore, microparticles showed favourable aerodynamic properties for deep lung delivery (MMAD 2.0-3.8 µm) and, thus, show potential for an application as inhalable tuberculosis therapy.
Collapse
Affiliation(s)
- Ludmylla Cunha
- a Centre for Biomedical Research , University of Algarve , Faro , Portugal.,b Centre for Marine Sciences, Faculty of Sciences and Technology , University of Algarve , Faro , Portugal
| | - Ana M Rosa da Costa
- c Chemistry Research Centre and Department of Chemistry and Pharmacy , University of Algarve , Faro , Portugal
| | - João P Lourenço
- c Chemistry Research Centre and Department of Chemistry and Pharmacy , University of Algarve , Faro , Portugal.,d Centro de Química Estrutural (CQE), Instituto Superior Técnico , University of Lisbon , Lisbon , Portugal
| | | | - Ana Grenha
- a Centre for Biomedical Research , University of Algarve , Faro , Portugal.,b Centre for Marine Sciences, Faculty of Sciences and Technology , University of Algarve , Faro , Portugal
| |
Collapse
|
27
|
Palcsó B, Zelkó R. Different types, applications and limits of enabling excipients of pharmaceutical dosage forms. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:21-39. [PMID: 30103860 DOI: 10.1016/j.ddtec.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Along with the development of novel drug delivery systems the material science is also advancing. Conventional and novel synthetic or natural excipients provide opportunities to design dosage forms of the required features including their bioavailability. Emerging trends in the design and development of drug products indicate an increasing need for the functionality-related characterization of excipients. The purpose of this review is to provide an overview of different types of excipients in relation to their application possibilities in various dosage forms with special focus on the enabling excipients. The study also summarizes the applied excipient systems of research formulations and dosage forms available on the market.
Collapse
Affiliation(s)
- Barnabás Palcsó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|