1
|
Syed MI, Kandagatla HP, Avdeef A, Serajuddin ATM. Supersolubilization and Amorphization of a Weakly Acidic Drug, Flurbiprofen, by applying Acid-Base supersolubilization (ABS) principle. Int J Pharm 2024; 663:124548. [PMID: 39098746 DOI: 10.1016/j.ijpharm.2024.124548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Improvement in drug solubility is a major challenge for developing pharmaceutical products. It was demonstrated earlier that aqueous solubilities of weakly basic drugs could be increased greatly by interaction with weak acids that would not form salts with the drugs, and the highly concentrated solutions thus produced converted to amorphous solids upon drying. The technique was called acid-base supersolubilization (ABS). The current investigation explored whether the ABS principle could also be applied to weakly acidic drugs. By taking flurbiprofen (pKa 4.09; free acid solubility 0.011 mg/mL) as the model weakly acidic drug and tromethamine, lysine, meglumine, and NaOH as bases, it was studied which of the bases would result in ABS. While in the presence of NaOH and tromethamine, flurbiprofen converted to salts having aqueous solubility of 11-19 mg/mL, the solubility increased to > 399 mg/mL with lysine and > 358 mg/mL with meglumine, producing supersolubilization. However, crystallization of lysine salt was observed with time, followed by some decrease in solubility after reaching maximum solubility with lysine. In contrast, the supersolubilization was maintained with meglumine, and no crystallization of meglumine salt was observed. Upon drying, flurbiprofen-meglumine solutions produced amorphous materials that dissolved rapidly and produced high drug concentrations in aqueous media. Thus, the ABS principle also applies to acidic drugs depending on the weak base used.
Collapse
Affiliation(s)
- Mohammed I Syed
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Hari P Kandagatla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue #102, New York, NY 10128, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
2
|
Rzewińska A, Szlęk J, Dąbrowski D, Juszczyk E, Mróz K, Räikkönen H, Siven M, Wieczorek M, Dorożyński P. Development of a Formulation and In Vitro Evaluation of a Pulmonary Drug Delivery System for a Novel Janus Kinase (JAK) Inhibitor, CPL409116. Pharmaceutics 2024; 16:1157. [PMID: 39339194 PMCID: PMC11435004 DOI: 10.3390/pharmaceutics16091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of targeted therapies for cytokine-dependent diseases has led to the discovery of Janus kinase (JAK) inhibitors, a promising class of drugs. Among them, CPL409116, a selective dual JAK and rho-associated protein kinase inhibitor (ROCK), has demonstrated potential for treating conditions such as pulmonary fibrosis exacerbated by the COVID-19 pandemic. This study investigated the feasibility of delivering CPL409116 via inhalation, with the aim of minimizing the systemic adverse effects associated with oral administration. Two micronization methods, jet milling and spray drying, were assessed for CPL409116, with spray drying chosen for its ability to produce an amorphous form of the compound. Moreover, parameters such as the mixing energy, drug load, and force control agent significantly influenced the fine particle fraction (FPF), a critical parameter for pulmonary drug delivery. This study provides insights into optimizing the formulation parameters to enhance the delivery efficiency of CPL409116 to the lungs, offering potential for improved therapeutic outcomes in cytokine-dependent pulmonary diseases.
Collapse
Affiliation(s)
- Aleksandra Rzewińska
- Finished Dosage Forms Department, Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
| | - Jakub Szlęk
- Chair and Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Damian Dąbrowski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Ewelina Juszczyk
- Finished Dosage Forms Department, Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
| | - Katarzyna Mróz
- Finished Dosage Forms Department, Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
| | - Heikki Räikkönen
- Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland
| | - Mia Siven
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science HELSUS, University of Helsinki, 00014 Helsinki, Finland
| | - Maciej Wieczorek
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
3
|
Li HY, Xu EY. Dual functional pullulan-based spray-dried microparticles for controlled pulmonary drug delivery. Int J Pharm 2023; 641:123057. [PMID: 37207859 DOI: 10.1016/j.ijpharm.2023.123057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Two main challenges are associated with current spray-dried microparticles for inhalation, including the enhancement of aerosolization performance of microparticles and the creation of sustained drug release for continuous treatment on-site. For achieving these purposes, pullulan was explored as a novel excipient to prepare spray-dried inhalable microparticles (with salbutamol sulphate, SS, as a model drug), which were further modified by additives of leucine (Leu), ammonium bicarbonate (AB), ethanol and acetone. It was demonstrated that all pullulan-based spray-dried microparticles had improved flowability and enhanced aerosolization behavior, with the fine particle (<4.46µm) fraction of 42.0-68.7% w/w, much higher than 11.4% w/w of lactose-SS. Moreover, all modified microparticles showed augmented emitted fractions of 88.0-96.9% w/w, over 86.5% w/w of pullulan-SS. The pullulan-Leu-SS and pullulan-(AB)-SS microparticles demonstrated further increased fine particle (<1.66µm) doses of 54.7µg and 53.3µg respectively, surpassing that (49.6µg) of pullulan-SS, suggesting an additionally increased drug deposition in the deep lungs. Furthermore, pullulan-based microparticles revealed sustained drug release profiles with elongated time (60mins) over the control (2mins). Clearly, pullulan has a great potential to construct dual functional microparticles for inhalation with improved pulmonary delivery efficiency and sustained drug release on-site.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NN.
| | - En-Yu Xu
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, Shen-Yang, Liao-Ning, 110122, China
| |
Collapse
|
4
|
Neuwirth M, Kappes SK, Hartig MU, Wagner KG. Amorphous Solid Dispersions Layered onto Pellets—An Alternative to Spray Drying? Pharmaceutics 2023; 15:pharmaceutics15030764. [PMID: 36986625 PMCID: PMC10054131 DOI: 10.3390/pharmaceutics15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Spray drying is one of the most frequently used solvent-based processes for manufacturing amorphous solid dispersions (ASDs). However, the resulting fine powders usually require further downstream processing when intended for solid oral dosage forms. In this study, we compare properties and performance of spray-dried ASDs with ASDs coated onto neutral starter pellets in mini-scale. We successfully prepared binary ASDs with a drug load of 20% Ketoconazole (KCZ) or Loratadine (LRD) as weakly basic model drugs and hydroxypropyl-methyl-cellulose acetate succinate or methacrylic acid ethacrylate copolymer as pH-dependent soluble polymers. All KCZ/ and LRD/polymer mixtures formed single-phased ASDs, as indicated by differential scanning calorimetry, X-ray powder diffraction and infrared spectroscopy. All ASDs showed physical stability for 6 months at 25 °C/65% rH and 40 °C/0% rH. Normalized to their initial surface area available to the dissolution medium, all ASDs showed a linear relationship of surface area and solubility enhancement, both in terms of supersaturation of solubility and initial dissolution rate, regardless of the manufacturing process. With similar performance and stability, processing of ASD pellets showed the advantages of a superior yield (>98%), ready to use for subsequent processing into multiple unit pellet systems. Therefore, ASD-layered pellets are an attractive alternative in ASD-formulation, especially in early formulation development at limited availability of drug substance.
Collapse
|
5
|
U A, Kartha TR, Madhurima V. Hydrogen-bonded networks in alcohol-acetone binary mixtures: molecular dynamics study. J Mol Model 2022; 28:382. [DOI: 10.1007/s00894-022-05369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
|
6
|
Development and Characterization of Eudragit ® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals (Basel) 2022; 15:ph15040492. [PMID: 35455489 PMCID: PMC9025505 DOI: 10.3390/ph15040492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.
Collapse
|
7
|
Chen T, Ma Z, Qiu Z, Zhong Z, Xing L, Guo Q, Luo D, Weng Z, Ge F, Huang Y, Zhang X, He H, Zhuang X, Li Q, Yuan T. Characterization of excipients to improve pharmaceutical properties of sirolimus in the supercritical anti-solvent fluidized process. Int J Pharm 2021; 611:121240. [PMID: 34780928 DOI: 10.1016/j.ijpharm.2021.121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Enhanced drug release and bioavailability of poorly soluble active pharmaceutical ingredient (API) can be achieved via a fluidized bed coating integrated with supercritical anti-solvent (SAS-FB) - a process of precipitating drug particles onto carrier granules. However, in the absence of excipients, SAS-FB often results in crystalline of the API on the surface of carriers, limiting the improvement of pharmaceutical properties. Co-processing with excipients is considered an effective approach to improve drug release in the SAS-FB process. Our study used sirolimus, an immune suppressive agent, as the model API to characterize excipients for their effect on pharmaceutical properties in the SAS-FB process. We show that co-precipitation of excipients and sirolumus impacts on carrier specific surface area and drug yield. Among the tested excipients, formulation containing polyvinylpyrrolidone K30 achieved the highest drug yield. Importantly, compared with Rapamune® tablet, our optimized formulation displayed a superior in vivo oral bioavailability by 3.05-fold in Sprague-Dawley rats and 3.99-fold in beagle dogs. A series of characterization of the processed API was performed to understand the mechanism by which excipients contributed to drug dissolution properties. Our study provides a useful guidance for the use of excipients in the SAS-FB technology to improve pharmaceutical properties of sirolimus and other poorly soluble drugs.
Collapse
Affiliation(s)
- Tingting Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhimin Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhong Zhong
- Department of Pharmacy and Medical Equipment, Foshan Chancheng People's Hospital, Foshan 528000, PR China
| | - Lei Xing
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Qiuping Guo
- Drug Non-Clinical Evaluation and Research Center of Guangzhou General Pharmaceutical Research Institute, Guangzhou 510240, PR China
| | - Dandong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhiwei Weng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Fucheng Ge
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yating Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiubing Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Hongling He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, OX3 7FZ, UK.
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Tianhui Yuan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
8
|
Cysewski P, Przybyłek M, Kowalska A, Tymorek N. Thermodynamics and Intermolecular Interactions of Nicotinamide in Neat and Binary Solutions: Experimental Measurements and COSMO-RS Concentration Dependent Reactions Investigations. Int J Mol Sci 2021; 22:7365. [PMID: 34298985 PMCID: PMC8306691 DOI: 10.3390/ijms22147365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the temperature-dependent solubility of nicotinamide (niacin) was measured in six neat solvents and five aqueous-organic binary mixtures (methanol, 1,4-dioxane, acetonitrile, DMSO and DMF). It was discovered that the selected set of organic solvents offer all sorts of solvent effects, including co-solvent, synergistic, and anti-solvent features, enabling flexible tuning of niacin solubility. In addition, differential scanning calorimetry was used to characterize the fusion thermodynamics of nicotinamide. In particular, the heat capacity change upon melting was measured. The experimental data were interpreted by means of COSMO-RS-DARE (conductor-like screening model for realistic solvation-dimerization, aggregation, and reaction extension) for concentration dependent reactions. The solute-solute and solute-solvent intermolecular interactions were found to be significant in all of the studied systems, which was proven by the computed mutual affinity of the components at the saturated conditions. The values of the Gibbs free energies of pair formation were derived at an advanced level of theory (MP2), including corrections for electron correlation and zero point vibrational energy (ZPE). In all of the studied systems the self-association of nicotinamide was found to be a predominant intermolecular complex, irrespective of the temperature and composition of the binary system. The application of the COSMO-RS-DARE approach led to a perfect match between the computed and measured solubility data, by optimizing the parameter of intermolecular interactions.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (M.P.); (A.K.); (N.T.)
| | | | | | | |
Collapse
|