1
|
Zhu J, Ye T, Tang M, Gao Y, Zhang J, Qian S, Wei Y. Eco-Friendly high Drug-Loading microemulsions with Incorporation of Deep eutectic Solvents: Advancing precision with the dual Ouzo effect. Int J Pharm 2025; 672:125265. [PMID: 39914509 DOI: 10.1016/j.ijpharm.2025.125265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Deep eutectic solvents (DES) enhance drug solubility but require delivery systems, while the Ouzo effect enables surfactant-free microemulsion formation despite limitations in oil phase ratio. By integrating DES as the oil phase, this study develops a dual Ouzo effect microemulsion system that induces both microemulsions and nanoprecipitations simultaneously. Through detailed analysis of composition diagrams, precise adjustment of the mass ratio of VA64 to propylene glycol enables strict control over particle size from 200 nm to 550 nm. This approach enhanced curcumin's solubility to 17.11 mg/mL, a 1700-fold increase compared to its water solubility, with excellent stability showing only 22.4 % degradation after 4 h of light exposure (versus 90-95 % in conventional carriers). The system increased the cumulative release amount of curcumin and presented a rapid initial release followed by a sustained release. Compared with traditional Ouzo effect systems, introducing DES significantly increased the oil phase ratio from 0.05 % to 30 % through enhanced molecular interactions and supersaturation. DES composition adjustment enabled microemulsion stabilization without complex processing, achieving optimal stability with a three-phase contact angle of 89.2° (±0.3°), approaching the theoretical ideal value of 90° for interface stability.
Collapse
Affiliation(s)
- Junxiao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China; School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, PR China
| | - Tianjian Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Mi Tang
- Jiangsu Litaier Pharma Co., Ltd., Nanjing, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
2
|
Li Y, Luo Y, Song X, Wang Y, Liu S, Ren F, Kong L, Zhang H. Enhancing water solubility of phytosterols through Co-amorphization with food-grade coformers. Curr Res Food Sci 2025; 10:100984. [PMID: 39911602 PMCID: PMC11795070 DOI: 10.1016/j.crfs.2025.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Phytosterols (PS) offer significant health benefits in human diet, but its poor solubility limits its effectiveness and application. This study explored enhancing PS solubility by testing thirteen food-grade coformers, three preparation methods and proportions screening to obtain the optimal formulation. Nicotinamide (Nic) was identified as the most effective coformer. A 20:1 (w/w) PS-Nic co-amorphous (CM) mixture, prepared via freeze-drying, achieved a solubility of 1536.4 μg/mL, significantly higher than pure PS. X-ray diffraction and differential scanning calorimetry confirmed the amorphous state of the mixture. Fourier-transform infrared, Raman, and 1H NMR spectroscopies, along with molecular dynamics simulations, revealed strong intermolecular interactions between PS and Nic. The PS-Nic CM demonstrated up to 60% in vitro dissolution and release within 2 h and maintained stable after storage at 4 °C for 6 months and under accelerated conditions equivalent to 10 months at room temperature. In sum, the crystal structure of PS was altered, and formed a co-amorphous system by using Nic as the optimal ligand via lyophilization to increase solubility. These findings suggest that the PS-Nic CM system has potential applications in functional foods, offering a feasible strategy to enhance the bioavailability of PS.
Collapse
Affiliation(s)
- Yuxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yingting Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xuening Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuzhuo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Simiao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| | - Lingyan Kong
- Department of Human Nutrition, Hospitality and Sport Management, The University of Alabama, Tuscaloosa, 35487, Alabama, USA
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100091, China
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China
| |
Collapse
|
3
|
Luo M, Chen A, Huang C, Guo M, Cai T. Effects of Polymers on Cocrystal Growth in a Drug-Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. Mol Pharm 2024; 21:3591-3602. [PMID: 38818946 DOI: 10.1021/acs.molpharmaceut.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Coamorphous and cocrystal drug delivery systems provide attractive crystal engineering strategies for improving the solubilities, dissolution rates, and oral bioavailabilities of poorly water-soluble drugs. Polymeric additives have often been used to inhibit the unwanted crystallization of amorphous drugs. However, the transformation of a coamorphous phase to a cocrystal phase in the presence of polymers has not been fully elucidated. Herein, we investigated the effects of low concentrations of the polymeric excipients poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) on the growth of carbamazepine-celecoxib (CBZ-CEL) cocrystals from the corresponding coamorphous phase. PEO accelerated the growth rate of the cocrystals by increasing the molecular mobility of the coamorphous system, while PVP had the opposite effect. The coamorphous CBZ-CEL system exhibited two anomalously fast crystal growth modes: glass-to-crystal (GC) growth in the bulk and accelerated crystal growth at the free surface. These two fast growth modes both disappeared after doping with PEO (1-3% w/w) but were retained in the presence of PVP, indicating a potential correlation between the two fast crystal growth modes. We propose that the different effects of PEO and PVP on the crystal growth modes arose from weaker effects of the polymers on cocrystallization at the surface than in the bulk. This work provides a deep understanding of the mechanisms by which polymers influence the cocrystallization kinetics of a multicomponent amorphous phase and highlights the importance of polymer selection in stabilizing coamorphous systems or preparing cocrystals via solid-based methods.
Collapse
Affiliation(s)
- Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chengbin Huang
- CMC Drug Product, Research and Development, BeiGene Co., Inc., Beijing 102206, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Haneef J, Ali S. Multicomponent Amorphous Solid Forms of Telmisartan: Insights into Mechanochemical Activation and Physicochemical Attributes. AAPS PharmSciTech 2024; 25:84. [PMID: 38605282 DOI: 10.1208/s12249-024-02799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The present work aims to explore the new solid forms of telmisartan (TEL) with alpha-ketoglutaric acid (KGA) and glutamic acid (GA) as potential coformers using mechanochemical approach and their role in augmentation in physicochemical parameters over pure crystalline TEL. Mechanochemical synthesis was performed using 1:1 stoichiometric ratio of TEL and the selected coformers in the presence of catalytic amount of ethanol for 1 h. The ground product was characterized by PXRD, DSC, and FTIR. The new solid forms were evaluated for apparent solubility, intrinsic dissolution, and physical stability. Preliminary characterization revealed the amorphization of the mechanochemical product as an alternate outcome of cocrystallization screening. Mechanistic understanding of the amorphous phase highlights the formation of amorphous-mediated cocrystallization that involves three steps, viz., molecular recognition, intermediate amorphous phase, and product nucleation. The solubility curves of both multicomponent amorphous solid forms (TEL-KGA and TEL-GA) showed the spring-parachute effect and revealed significant augmentation in apparent solubility (8-10-folds), and intrinsic dissolution release (6-9-folds) as compared to the pure drug. Besides, surface anisotropy and differential elemental distributions in intrinsic dissolution compacts of both solid forms were confirmed by FESEM and EDX mapping. Therefore, amorphous phases prepared from mechanochemical synthesis can serve as a potential solid form for the investigation of a cocrystal through amorphous-mediated cocrystallization. This has greater implications in solubility kinetics wherein the rapid precipitation of the amorphous phase can be prevented by the metastable cocrystal phase and contribute to the significant augmentation in the physicochemical parameters.
Collapse
Affiliation(s)
- Jamshed Haneef
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Shakir Ali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|