1
|
Li Y, Liu H, Fang R, Jin J, Yang F, Chen J, Zhang J. Designing novel Au(III) complexes based on the structure of diazepam: Achieving a multiaction mechanism against glioma. Eur J Med Chem 2025; 283:117171. [PMID: 39705733 DOI: 10.1016/j.ejmech.2024.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 12/22/2024]
Abstract
Metal-based drugs have been used in the clinical treatment of tumors for over 30 years. However, no metal-based drugs have been clinically approved to treat glioma. Although metal complexes have excellent cytotoxicity, their most critical problem is crossing the blood-brain barrier. Therefore, to enable metal complexes to cross blood-brain barrier and target glioma therapy, herein, we propose to rationally used the basic structure of diazepam (5-chlorobenzophenone) and thiosemicarbazide to synthesize gold (Au) complexes C1, C2 and C3 with antiglioma activity. The C3 complex with two methyl groups attached to the N3 of thiosemicarbazone exhibited excellent cytotoxicity to glioma cells through its multiaction mechanism against glioma, inducing apoptosis, autophagy death, and deoxyribonucleic acid damage. In addition, the synthesized C3 complex can effectively cross the blood-brain barrier and accumulate in glioma, considerably decreasing the untoward reaction in vivo. Our findings provide a novel strategy for designing metal-based complexes for the treatment of glioma.
Collapse
Affiliation(s)
- Yanping Li
- Mental Health Education Center of College Student, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Haoran Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, PR China
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China.
| | - Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Mattioli EJ, Cipriani B, Zerbetto F, Marforio TD, Calvaresi M. Interaction of Au(III) with amino acids: a vade mecum for medicinal chemistry and nanotechnology. J Mater Chem B 2024; 12:5162-5170. [PMID: 38687242 DOI: 10.1039/d4tb00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Au(III) is highly reactive. At odds with its reduced counterpart, Au(I), it is hardly present in structural databases. And yet, it is the starting reactant to form gold nanoclusters (AuNCs) and the constitutive component of a new class of drugs. Its reactivity is a world apart from that of the iso-electronic Pt(II) species. Rather than DNA, it targets proteins. Its interaction with amino acid residues is manifold. It can strongly interact with the residue backbones, amino acid side chains and protein ends, it can form appropriate complexes whose stabilization energy reaches up to more than 40 kcal mol-1, it can affect the pKa of amino acid residues, and it can promote charge transfer from the residues to the amount that it is reduced. Here, quantum chemical calculations provide quantitative information on all the processes where Au(III) can be involved. A myriad of structural arrangements are examined in order to determine the strongest interactions and quantify the amount of charge transfer between protonated and deprotonated residues and Au(III). The calculated interaction energies of the amino acid side chains with Au(III) quantitatively reproduce the experimental tendency of Au(III) to interact with selenocysteine, cysteine and histidine and negatively charged amino acids such as Glu and Asp. Also, aromatic residues such as tyrosine and tryptophan strongly interact with Au(III). In proteins, basic pH plays a role in the deprotonation of cysteine, lysine and tyrosine and strongly increases the binding affinity of Au(III) toward these amino acids. The amino acid residues in the protein can also trigger the reduction of Au(III) ions. Sulfur-containing amino acids (cysteine and methionine) and selenocysteine provide almost one electron to Au(III) upon binding. Tyrosine also shows a considerable tendency to act as a reductant. Other amino acids, commonly identified in Au-protein adducts, such as Ser, Trp, Thr, Gln, Glu, Asn, Asp, Lys, Arg and His, possess a notable reducing power toward Au(III). These results and their discussion form a vade mecum that can find application in medicinal chemistry and nanotech applications of Au(III).
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Beatrice Cipriani
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Tainah Dorina Marforio
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
3
|
Ma F, Li Y, Cai M, Yang W, Wu Z, Dong J, Qin JJ. ML162 derivatives incorporating a naphthoquinone unit as ferroptosis/apoptosis inducers: Design, synthesis, anti-cancer activity, and drug-resistance reversal evaluation. Eur J Med Chem 2024; 270:116387. [PMID: 38593589 DOI: 10.1016/j.ejmech.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.
Collapse
Affiliation(s)
- Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenyan Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhoum, 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|