1
|
Hatem S, Sayyed ME, El-Kayal M. Intranasal delivery of kaempferol via magnesomes for brain seizure treatment: Design, characterization, and biodistribution studies. J Pharm Sci 2025; 114:103780. [PMID: 40185474 DOI: 10.1016/j.xphs.2025.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The current study aims to develop phospholipid magnesomes retaining the inherent neuroprotective activities of kaempferol as a proposed treatment approach for epilepsy. Magnesomes were prepared using varied amounts of phospholipid, magnesium sulfate and poloxamer 188, and evaluated on in-vitro and in-vivo levels. The prepared vesicles possessed nanosizes (112-625 nm), negative charges (-16 to -20 mV), and entrapment efficiency (80-96 %) with negligible changes in their colloidal properties after 3 months' storage. Magnesomes showed sustained release of kaempferol as well as superior permeability relative to drug solution. Radiolabeling of kaempferol with iodine-131 was successfully performed using electrophilic substitution. The superior brain uptake of intranasally delivered 131I-kaempferol-magnesomes containing 3.13 µg/20µl of kaempferol compared to intravenous and intranasal solutions was demonstrated employing biodistribution and pharmacokinetic tests conducted using Swiss Albino male mice. Brain to blood ratio of the intranasally administered kaempferol was significantly higher compared to intravenous injection showing uptake of 9.9 ± 0.3 % injected dose per gram organ at the first 5 min ensuring a rapid onset of action. The drug targeting efficiency and nose to brain direct transport percentages of 131I- kaempferol-magnesomes were 215.0 and 87.0 %, respectively with relative bioavailability of 810.24 ± 119.1 %. Accordingly, intranasal kaempferol-magnesomes showed effectiveness in brain targeting and could be beneficial for managing epileptic seizures.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt
| | - Marwa Eid Sayyed
- Radio Labelled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt.
| |
Collapse
|
2
|
Rezaee Y, Rezaee E, Karami L, Torshabi M, Haeri A. Crocin-Phospholipid Complex: Molecular Docking, Molecular Dynamics Simulation, Preparation, Characterization, and Antioxidant Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144041. [PMID: 39005730 PMCID: PMC11246643 DOI: 10.5812/ijpr-144041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 07/16/2024]
Abstract
Background Crocin is a water-soluble carotenoid compound present in saffron (Crocus sativus L.), known for its wide range of pharmacological activities, including cardioprotective, hepatoprotective, anti-tumorigenic, anti-atherosclerosis, and anti-inflammatory effects. Objectives The instability of crocin, its low miscibility with oils, and poor bioavailability pose challenges for its pharmaceutical applications. This study aimed to design and prepare a crocin-phospholipid complex (CPC) and assess its physicochemical properties. Methods The study investigated the formation of the complex and its binding affinity through molecular docking. Molecular dynamics (MD) simulations were conducted to find the optimal molar ratio of crocin to phospholipid for the complex's preparation. The CPC was produced using the solvent evaporation method. Techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), nuclear magnetic resonance (NMR), and solubility studies were utilized to characterize and confirm the formation of CPC. Additionally, the in vitro antioxidant activity of crocin and CPC was evaluated. Results Molecular dynamic simulations explored molar ratios of 1: 1, 1: 1.5, and 1: 2 for crocin to phospholipid. The ratio of 1: 2 was found to be the most stable, exhibiting the highest probability of hydrogen bond formation. Molecular docking, FTIR, and NMR studies indicated hydrogen bond interactions between crocin and phospholipid, confirming CPC's formation. XRD and FE-SEM analyses showed a decrease in crocin's crystallinity within the phospholipid complex. Furthermore, the solubility of crocin in n-octanol was enhanced post-complexation, indicating an increase in crocin's lipophilic nature. Conclusions Phospholipid complexation emerges as a promising technique for enhancing the physicochemical characteristics of crocin.
Collapse
Affiliation(s)
- Yasaman Rezaee
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
4
|
Hashtrodylar Y, Rabbani S, Dadashzadeh S, Haeri A. Berberine-phospholipid nanoaggregate-embedded thiolated chitosan hydrogel for aphthous stomatitis treatment. Nanomedicine (Lond) 2023; 18:1227-1246. [PMID: 37712555 DOI: 10.2217/nnm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: This study aimed to develop nanoaggregates of berberine-phospholipid complex incorporated into thiolated chitosan (TCS) hydrogel for the treatment of aphthous stomatitis. Methods: The berberine-phospholipid complex was formulated through the solvent evaporation technique and assembled into nanoaggregates. TCS was synthesized through the attachment of thioglycolic acid to chitosan (CS). Nanoaggregates-TCS was prepared by the incorporation of nanoaggregates into TCS and underwent in vitro and in vivo tests. Results: Nanoaggregates-TCS exhibited prolonged release of berberine. The mucoadhesive strength of nanoaggregates-TCS increased 1.75-fold compared with CS hydrogel. In vivo studies revealed the superior therapeutic efficacy of nanoaggregates-TCS compared with that of other groups. Conclusion: Due to prolonged drug release, appropriate residence time and anti-inflammatory effects, nanoaggregates-TCS is an effective system for the treatment of aphthous stomatitis.
Collapse
Affiliation(s)
- Yasaman Hashtrodylar
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, 1313814117, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| |
Collapse
|
5
|
Omidian H, Wilson RL, Chowdhury SD. Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. Gels 2023; 9:596. [PMID: 37623051 PMCID: PMC10453486 DOI: 10.3390/gels9080596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
6
|
Molinaro G, Fontana F, Pareja Tello R, Wang S, López Cérda S, Torrieri G, Correia A, Waris E, Hirvonen JT, Barreto G, A Santos H. In Vitro Study of the Anti-inflammatory and Antifibrotic Activity of Tannic Acid-Coated Curcumin-Loaded Nanoparticles in Human Tenocytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23012-23023. [PMID: 37129860 DOI: 10.1021/acsami.3c05322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tendinitis is a tendon disorder related to inflammation and pain, due to an injury or overuse of the tissue, which is hypocellular and hypovascular, leading to limited repair which occurs in a disorganized deposition of extracellular matrix that leads to scar formation and fibrosis, ultimately resulting in impaired tendon integrity. Current conventional treatments are limited and often ineffective, highlighting the need for new therapeutic strategies. In this work, acetalated-dextran nanoparticles (AcDEX NPs) loaded with curcumin and coated with tannic acid (TA) are developed to exploit the anti-inflammatory and anti-fibrotic properties of the two compounds. For this purpose, a microfluidic technique was used in order to obtain particles with a precise size distribution, aiming to decrease the batch-to-batch variability for possible future clinical translation. Coating with TA increased not only the stability of the nanosystem in different media but also enhanced the interaction and the cell-uptake in primary human tenocytes and KG-1 macrophages. The nanosystem exhibited good biocompatibility toward these cell types and a good release profile in an inflammatory environment. The efficacy was demonstrated by real-time quantitative polymerase chain reaction, in which the curcumin loaded in the particles showed good anti-inflammatory properties by decreasing the expression of NF-κb and TA-coated NPs showing anti-fibrotic effect, decreasing the gene expression of TGF-β. Overall, due to the loading of curcumin and TA in the AcDEX NPs, and their synergistic activity, this nanosystem has promising properties for future application in tendinitis.
Collapse
Affiliation(s)
- Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Sandra López Cérda
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Eero Waris
- Department of Hand Surgery, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Fabianinkatu 33, 00014 Helsinki, Finland
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|