1
|
Guo X, Zhao A, Han J, Yuping L, Chen X, Cheng Z, Hou L, Lv L. Single-Cell Transcriptome Reveals the Cellular Response to PEG-Induced Stress in Wheat Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40287963 DOI: 10.1021/acs.jafc.4c12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Drought is a major factor limiting the production and yield of wheat bread (Triticum aestivum). Therefore, investigating the wheat drought-related response mechanism is an urgent priority. Here, the single-cell transcriptome of drought-nonsusceptible and susceptible wheat seedlings subjected to PEG-induced stress was systematically analyzed to study the drought-related response at the cellular level. We identified five major cell types using known marker genes and constructed a wheat leaf cell atlas. On this foundation, several potential specific marker genes for each cell type were identified, which provide a reference for further cell type annotation. Moreover, we identified cellular heterogeneity in the drought-related response mechanisms and regulatory networks among cell types. Specifically, the drought response of mesophyll cells was correlated with the photosynthetic pathway. Pseudotime trajectory analysis revealed the transition of epidermal cells from their normal function to a defense response under stress. Moreover, we also characterized the genes associated with the drought response. Notably, we identified two transcription factors (TraesCS1D02G223600 and TraesCS1D02G072900) as master regulators in most cell types. Our study provides detailed insights into the response heterogeneity of cells under PEG-induced stress. The gene resources obtained in our study could be applied to breed better crop plants with improved drought tolerance.
Collapse
Affiliation(s)
- Xiaorui Guo
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
- Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang 050031, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
- Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang 050031, China
| | - Jiangwei Han
- Shijiazhuang Seed Management Station, Shijiazhuang 050021, China
| | - Liu Yuping
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
- Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang 050031, China
| | - Xiyong Chen
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
- Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang 050031, China
| | - Ziyi Cheng
- Lanzhou University of Technology, Lanzhou 730050, China
| | - Liang Hou
- Institute of Agricultural Information and Economy, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
- Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang 050031, China
| |
Collapse
|
2
|
Liu Q, Kang J, Du L, Liu Z, Liang H, Wang K, He H, Zhang X, Wang Q, Hong Y, Cheng Q, Liu X, Ma W, Zhao J. Single-cell multiome reveals root hair-specific responses to salt stress. THE NEW PHYTOLOGIST 2025. [PMID: 40269556 DOI: 10.1111/nph.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Soil salinization, exacerbated by environmental deterioration and improper cultivation, is a major challenge for sustainable agriculture. The root is the primary organ in plants to perceive and respond to salt stress. Utilizing single-cell sequencing, we have created the first single-cell transcriptional and chromatin accessibility landscape for normal and salt-stressed root tips in non-heading Chinese cabbage (NHCC). Our study reveals that salt stress disrupts the normal differentiation of root hairs, leaving many in an undifferentiated state and preventing stress response gene expression. Inter-species analyses show that both salt and osmotic stresses inhibit root hair differentiation and elongation similarly, resulting in fewer, malfunctioning root hairs. We found that high salinity affects root hair iron transport. Salt stress-responsive genes, cell type-specific transcriptional regulatory networks, and trajectory curves are linked to iron transport. Specifically, the expression of BcIRT2, a metal transporter gene, is influenced by salt stress. Silencing BcIRT2 causes chlorotic leaves and increases salt sensitivity, reducing iron content in NHCC roots. Our findings offer significant insights into plant salt stress responses and provide valuable information for breeding salt-tolerant NHCC and other crops.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | | | - Lin Du
- BGI Research, Beijing, 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaokun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu, 215155, China
| | - Hao Liang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Kailai Wang
- Glbizzia Biosciences, Beijing, 102609, China
| | - Haijiao He
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaonan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Qifan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Xin Liu
- BGI Research, Beijing, 102601, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| |
Collapse
|
3
|
Lv Z, Jiang S, Kong S, Zhang X, Yue J, Zhao W, Li L, Lin S. Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1679. [PMID: 38931111 PMCID: PMC11207393 DOI: 10.3390/plants13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
"Omics" typically involves exploration of the structure and function of the entire composition of a biological system at a specific level using high-throughput analytical methods to probe and analyze large amounts of data, including genomics, transcriptomics, proteomics, and metabolomics, among other types. Genomics characterizes and quantifies all genes of an organism collectively, studying their interrelationships and their impacts on the organism. However, conventional transcriptomic sequencing techniques target population cells, and their results only reflect the average expression levels of genes in population cells, as they are unable to reveal the gene expression heterogeneity and spatial heterogeneity among individual cells, thus masking the expression specificity between different cells. Single-cell transcriptomic sequencing and spatial transcriptomic sequencing techniques analyze the transcriptome of individual cells in plant or animal tissues, enabling the understanding of each cell's metabolites and expressed genes. Consequently, statistical analysis of the corresponding tissues can be performed, with the purpose of achieving cell classification, evolutionary growth, and physiological and pathological analyses. This article provides an overview of the research progress in plant single-cell and spatial transcriptomics, as well as their applications and challenges in plants. Furthermore, prospects for the development of single-cell and spatial transcriptomics are proposed.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuaijun Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Yue
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Shao L, Jin S, Chen J, Yang G, Fan R, Zhang Z, Deng Q, Han J, Ma X, Dong Z, Lu H, Hu W, Wang K, Hu L, Shen Z, Huang S, Zhao T, Guan X, Hu Y, Zhang T, Fang L. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. PLANT COMMUNICATIONS 2024; 5:100832. [PMID: 38321741 PMCID: PMC11121743 DOI: 10.1016/j.xplc.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Members of the Malvaceae family, including Corchorus spp., Gossypium spp., Bombax spp., and Ceiba spp., are important sources of natural fibers. In the past decade, the genomes of several Malvaceae species have been assembled; however, the evolutionary history of Malvaceae species and the differences in their fiber development remain to be clarified. Here, we report the genome assembly and annotation of two natural fiber plants from the Malvaceae, Bombax ceiba and Ceiba pentandra, whose assembled genome sizes are 783.56 Mb and 1575.47 Mb, respectively. Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number (2n = 14 to 2n = 96) and genome size (234 Mb to 2676 Mb) among Malvaceae species. We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromosomes, providing new insights into the evolutionary trajectories of Malvaceae species. MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions in fiber cell-fate determination in the epidermis. It appears to perform this function in any tissue where it is expressed, i.e. in fibers on the endocarp of B. ceiba and in ovule fibers of cotton. We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of the finer, less spinnable, weaker fibers of B. ceiba. Our study provides two high-quality genomes of natural fiber plants and offers insights into the evolution of Malvaceae species and differences in their natural fiber formation and development through multi-omics analysis.
Collapse
Affiliation(s)
- Lei Shao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guangsui Yang
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Rui Fan
- Spices and Beverages Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qian Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hejun Lu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wanying Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lisong Hu
- Spices and Beverages Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Zhen Shen
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Surong Huang
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
5
|
Liang S, Li Y, Chen Y, Huang H, Zhou R, Ma T. Application and prospects of single-cell and spatial omics technologies in woody plants. FORESTRY RESEARCH 2023; 3:27. [PMID: 39526269 PMCID: PMC11524316 DOI: 10.48130/fr-2023-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2024]
Abstract
Over the past decade, high-throughput sequencing and high-resolution single-cell transcriptome sequencing technologies have undergone rapid development, leading to significant breakthroughs. Traditional molecular biology methods are limited in their ability to unravel cellular-level heterogeneity within woody plant tissues. Consequently, techniques such as single-cell transcriptomics, single-cell epigenetics, and spatial transcriptomics are rapidly gaining popularity in the study of woody plants. In this review, we provide a comprehensive overview of the development of these technologies, with a focus on their applications and the challenges they present in single-cell transcriptome research in woody plants. In particular, we delve into the similarities and differences among the results of current studies and analyze the reasons behind these differences. Furthermore, we put forth potential solutions to overcome the challenges encountered in single-cell transcriptome applications in woody plants. Finally, we discuss the application directions of these techniques to address key challenges in woody plant research in the future.
Collapse
Affiliation(s)
- Shaoming Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhang J, Ahmad M, Gao H. Application of single-cell multi-omics approaches in horticulture research. MOLECULAR HORTICULTURE 2023; 3:18. [PMID: 37789394 PMCID: PMC10521458 DOI: 10.1186/s43897-023-00067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Cell heterogeneity shapes the morphology and function of various tissues and organs in multicellular organisms. Elucidation of the differences among cells and the mechanism of intercellular regulation is essential for an in-depth understanding of the developmental process. In recent years, the rapid development of high-throughput single-cell transcriptome sequencing technologies has influenced the study of plant developmental biology. Additionally, the accuracy and sensitivity of tools used to study the epigenome and metabolome have significantly increased, thus enabling multi-omics analysis at single-cell resolution. Here, we summarize the currently available single-cell multi-omics approaches and their recent applications in plant research, review the single-cell based studies in fruit, vegetable, and ornamental crops, and discuss the potential of such approaches in future horticulture research.
Collapse
Affiliation(s)
- Jun Zhang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mayra Ahmad
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Gao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|