1
|
Webster MW. Initiation of Translation in Bacteria and Chloroplasts. J Mol Biol 2025:169137. [PMID: 40221131 DOI: 10.1016/j.jmb.2025.169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Relative rates of protein synthesis in bacteria generally depend on the number of copies of a messenger RNA (mRNA) and the efficiency of their loading with ribosomes. Translation initiation involves the multi-stage assembly of the ribosome on the mRNA to begin protein synthesis. In bacteria, the small ribosomal subunit (30S) and mRNA form a complex that can be supported by RNA-protein and RNA-RNA interactions and is extensively modulated by mRNA folding. The initiator transfer RNA (tRNA) and large ribosomal subunit (50S) are recruited with aid of three initiation factors (IFs). Equivalent translation initiation processes occur in chloroplasts due to their endosymbiotic origin from photosynthetic bacteria. This review first summarizes the molecular basis of translation initiation in bacteria, highlighting recent insight into the initial, intermediate and late stages of the pathway obtained by structural analyses. The molecular basis of chloroplast translation initiation is then reviewed, integrating our mechanistic understanding of bacterial gene expression supported by detailed in vitro experiments with data on chloroplast gene expression derived primarily from genetic studies.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Liu H, Huang Z, Wang X, Hu K, Jiang Q, Chen F, Ma Y, Cheng Z, Pan Y, Weng Y. Regreening mechanisms in cucumber: insights from a CsSIG2 mutation affecting chloroplast development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:82. [PMID: 40121605 DOI: 10.1007/s00122-025-04854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE CsSIG2 is essential for cucumber chloroplast development, and mutations in CsSIG2 reveal mechanisms that restore chloroplast functionality and drive the regreening phenotype in the mutant. Chloroplast development and leaf color are essential traits that significantly influence plant photosynthesis and overall vigor. This study investigates a natural mutation in the cucumber that leads to a virescent leaf-color (Csvl-6) phenotype characterized by an initial yellow color in cotyledons and young leaves, which gradually transition to green as the plant matures. We utilized bulked segregant analysis and genetic linkage mapping to locate the best candidate gene sigma factor 2 (CsSIG2) on chromosome 6, identifying a single nonsynonymous SNP resulting in an arginine to glycine substitution in the CsSIG2 protein. Comparative transcriptome analysis highlighted that this mutation disrupts early chloroplast biogenesis and delays chlorophyll accumulation, but the chloroplasts can recover, leading to greening during later stages of leaf development. Our findings reveal that the recovery phenomenon involves upregulation of chloroplast-encoded genes responsible for thylakoid membrane formation and photosystem function, alongside altered expression of transcription factors linked to chlorophyll metabolism. This study elucidates the genetic and molecular basis of chloroplast development in cucumber, providing valuable insights into the mechanisms underlying leaf greening, which could inform future breeding efforts focused on manipulating leaf color traits for enhanced crop performance.
Collapse
Affiliation(s)
- Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Zeqiang Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaihong Hu
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Qinqin Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifan Chen
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuxuan Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| |
Collapse
|
3
|
Tan T, Xu S, Liu J, Ouyang M, Zhang J. A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2025; 14:921. [PMID: 40265857 PMCID: PMC11944589 DOI: 10.3390/plants14060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Chloroplast development is a highly complex process, involving many regulatory mechanisms that remain poorly understood. This study reports a novel PPR protein, RFCD1 (Regulation Factor of Chloroplast Development 1). Fluorescence localization analysis reveals that the N-terminal 60 amino acids of RFCD1 fused with GFP protein specifically direct the protein to the chloroplast. The knockout mutant of RFCD1 is embryo-lethal. RFCD1 RNA interference (RNAi) transgenic lines display chlorosis phenotypes and abnormal chloroplast development. Quantitative real-time PCR (qRT-PCR) showed that the expression levels of the plastid-encoded RNA polymerase (PEP) genes were significantly decreased in the RNAi lines. Furthermore, RNA blotting results and RNA-seq data showed that the processing of plastid rRNA was also affected in the RNAi lines. Taken together, these results indicate that RFCD1 might be involved in chloroplast gene expression and rRNA processing, which is essential for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Tianming Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengnan Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Qiu Z, Wen S, Sun P, Chen D, Wang C, Song X, Xiao L, Zhang P, Zhao D, Wen C, Guan P, Du X, Sun Y, Xu C, Song J. RAS, a Pentatricopeptide Repeat Protein, Interacts with OsTRX z to Regulate Chloroplast Gene Transcription and RNA Processing. PLANTS (BASEL, SWITZERLAND) 2025; 14:247. [PMID: 39861600 PMCID: PMC11768195 DOI: 10.3390/plants14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments. RAS contains 16 PPR motifs and features a small MutS-related (SMR) domain at its C-terminus. CRISPR/Cas9-generated ras mutants exhibited an albino seedling-lethal phenotype characterized by abnormal chloroplast structures and a significantly reduced chlorophyll content. RAS localizes to the chloroplast and is predominantly expressed in young leaves. Mutations in RAS affect RNA editing at the rpl2, rps14, and ndhA sites, as well as RNA splicing at the rpl2, atpF, and ndhA transcripts within the chloroplast. Furthermore, the expression levels of genes associated with chloroplast formation are altered in the ras mutant. Both OsTRX z and RAS were found to interact with chloroplast signal recognition particle (cpSRP) proteins, indicating that their proper localization within the chloroplast may be dependent on the SRP pathway. Collectively, our findings highlight the critical role of RAS in chloroplast development, as it is involved in RNA processing and the regulation of chloroplast gene expression.
Collapse
Affiliation(s)
- Zhennan Qiu
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Shiyong Wen
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Peinan Sun
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
| | - Chunmiao Wang
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Xiliang Song
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Liying Xiao
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Peiliang Zhang
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Dongying Zhao
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Cuiping Wen
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Peiyan Guan
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Xuechu Du
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Yinghui Sun
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Chenshan Xu
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| | - Jian Song
- College of Life Science, Dezhou University, Dezhou 253023, China; (S.W.); (P.S.); (C.W.); (X.S.); (L.X.); (P.Z.); (D.Z.); (C.W.); (P.G.); (X.D.); (Y.S.); (C.X.); (J.S.)
| |
Collapse
|
5
|
Zhao W, Sun X, Wu S, Wu S, Hu C, Huo H, Deng G, Sheng O, Bi F, He W, Dou T, Dong T, Li C, Liu S, Gao H, Li C, Yi G, Yang Q. MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:12. [PMID: 39803631 PMCID: PMC11717755 DOI: 10.1007/s11032-024-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, Ma04g15900 and Ma08g32850, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', OsSD1) in the banana genome. The expression of MaGA20ox2f is confined to leaves, peduncles, fruit peels, and pulp. Knockout of MaGA20ox2f by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in ∆MaGA20ox2f mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in ΔMaGA20ox2f mutant leaves and GA1 deficiency in ΔMaGA20ox2f mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of ΔMaGA20ox2f mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01523-3.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiaoxuan Sun
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300 Jiangsu China
| | - Shaoping Wu
- Life Sciences College, Zhaoqing University, Zhaoqing, 526061 Guangdong China
| | - Shuofan Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703 USA
| | - Guiming Deng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Ou Sheng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Weidi He
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tao Dong
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunyu Li
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Siwen Liu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Huijun Gao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
6
|
Peng Y, Jiang Y, Chen Q, Lin Y, Li M, Zhang Y, Wang Y, He W, Zhang Y, Wang X, Tang H, Luo Y. Comparative transcriptome and metabolomic analysis reveal key genes and mechanisms responsible for the dark-green leaf color of a strawberry mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109327. [PMID: 39608287 DOI: 10.1016/j.plaphy.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.
Collapse
Affiliation(s)
- Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Tang Q, Xu D, Lenzen B, Brachmann A, Yapa MM, Doroodian P, Schmitz-Linneweber C, Masuda T, Hua Z, Leister D, Kleine T. GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. PLANT COMMUNICATIONS 2024; 5:101069. [PMID: 39169625 PMCID: PMC11671767 DOI: 10.1016/j.xplc.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.
Collapse
Affiliation(s)
- Qian Tang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Paymon Doroodian
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku 153-8902, Tokyo, Japan
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany.
| |
Collapse
|
8
|
Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, Ding QS, Ma DN, Song LY, Li J, Tang HC, Zhu XY, Zheng HL. Genome-Wide Identification of Pentatricopeptide Repeat (PPR) Gene Family and Multi-Omics Analysis Provide New Insights Into the Albinism Mechanism of Kandelia obovata Propagule Leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5498-5510. [PMID: 39222055 DOI: 10.1111/pce.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Qian-Su Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Liu PZ, Wang YH, Sun YH, Wei YJ, Sun X, Li MY, Tan GF, Xiong AS. Genome-wide identification and expression analysis of the MORF gene family in celery reveals their potential role in chloroplast development. J Genet Eng Biotechnol 2024; 22:100443. [PMID: 39674655 PMCID: PMC11621489 DOI: 10.1016/j.jgeb.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 11/09/2024] [Indexed: 12/16/2024]
Abstract
Chlorophyll is an important nutrient in celery and one of the main indexes of quality evaluation. RNA editing in chloroplasts is an important factor affecting chloroplast development and chlorophyll biosynthesis. Multisite organelle RNA editing factor (MORF) protein is a necessary regulator of chloroplast RNA editing. In this study, a total of 8 MORF genes in celery were identified, which were named AgMORF1a, AgMORF1b, AgMORF2a, AgMORF2b, AgMORF3, AgMORF7, AgMORF8 and AgMORF9 according to their subfamily classification. The physicochemical property, conserved motifs, cis-acting elements and protein interaction were predicted according to the sequences. The phylogenetic relationships and evolutionary selective pressure between MORF genes in celery and other Apiaceae plants were further analyzed. The results showed that AgMORF1b, AgMORF2a, AgMORF2b and AgMORF9 were predicted to be localized in chloroplasts. The evolution of MORF genes in 4 Apiaceae plants including celery, carrot, coriander and water dropwort was influenced by purify selection. Transcriptome data showed that the transcriptional levels of AgMORF2a, AgMORF2b, AgMORF8 and AgMORF9 were relatively higher among all MORF genes in petioles of celery, indicating their major role. RT-qPCR data showed that the expression levels of the above 4 genes were significantly higher in petioles of green celery than those of white celery. This study provided a basis for analyzing the effects of MORF proteins on chloroplast development of celery with different chlorophyll accumulation.
Collapse
Affiliation(s)
- Pei-Zhuo Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yue-Hua Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yong-Ju Wei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xu Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Meng-Yao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guo-Fei Tan
- Institute of Horticulture, Key Laboratory of Crop Gene Resources and Germplasm Innovation in Karst Mountain Area of Agriculture and Rural Ministry, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Facility Horticulture Research Institute of Suqian, Suqian Research Institute of Nanjing Agricultural University, Suqian 223800, Jiangsu, China.
| |
Collapse
|
10
|
Wang T, Wang GL, Fang Y, Zhang Y, Peng W, Zhou Y, Zhang A, Yu LJ, Lu C. Architecture of the spinach plastid-encoded RNA polymerase. Nat Commun 2024; 15:9838. [PMID: 39537621 PMCID: PMC11561172 DOI: 10.1038/s41467-024-54266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The plastid-encoded RNA polymerase serves as the principal transcription machinery within chloroplasts, transcribing over 80% of all primary plastid transcripts. This polymerase consists of a prokaryotic-like core enzyme known as the plastid-encoded RNA polymerase core, and is supplemented by newly evolved associated proteins known as PAPs. However, the architecture of the plastid-encoded RNA polymerase and the possible functions of PAPs remain unknown. Here, we present the cryo-electron microscopy structure of a 19-subunit plastid-encoded RNA polymerase complex derived from spinach (Spinacia oleracea). The structure shows that the plastid-encoded RNA polymerase core resembles bacterial RNA polymerase. Twelve PAPs and two additional proteins (FLN2 and pTAC18) bind at the periphery of the plastid-encoded RNA polymerase core, forming extensive interactions that may facilitate complex assembly and stability. PAPs may also protect the complex against oxidative damage and has potential functions in transcriptional regulation. This research offers a structural basis for future investigations into the functions and regulatory mechanisms governing the transcription of plastid genes.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Fang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yi Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wenxin Peng
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yue Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Congming Lu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
11
|
Duan Y, Wang Y, Ding W, Wang C, Meng L, Meng J, Chen N, Liu Y, Xing S. Comparative and phylogenetic analysis of the chloroplast genomes of four commonly used medicinal cultivars of Chrysanthemums morifolium. BMC PLANT BIOLOGY 2024; 24:992. [PMID: 39434004 PMCID: PMC11495106 DOI: 10.1186/s12870-024-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
'Boju' and 'Huaiju' are cultivars of the Chrysanthemum (Chrysanthemum morifolium Ramat.) in the family Asteraceae, valued for their medicinal, tea, and ornamental properties, and valued by individuals. However, the yield and quality of medicinal chrysanthemums are limited by the characteristics of the germplasm resources, including the identification at the varieties and cultivation levels. Currently, research characterizing the chloroplast genomes of medicinal Chrysanthemum flowers is relatively limited. This study conducted chloroplast whole-genome sequencing on two cultivars of Chrysanthemum, 'Boju' and 'Huaiju', and compared them with the previously published chloroplast genomes of 'Hangbaiju' and 'Gongju'. The study analyzed the chloroplast genome structures of these four medicinal Chrysanthemums, identifying mutation hotspots and clarifying their phylogenetic relationships. The chloroplast genome sizes of four medicinal Chrysanthemum cultivation products ranged from 151,057 to 151,109 bp, with GC content ranging from 37.45% to 37.76%. A total of 134 genes were identified, including 89 protein-coding genes, 37 ribosomal RNA genes, and 8 transfer RNA genes. Comparative genomic analysis revealed 159 large repeat sequences, 276 simple sequence repeats, 1 gene, and 8 intergenic regions identified as highly variable regions. Nucleotide diversity (Pi) values were high (≥ 0.004) for the petN-psbM, trnR-UCU-trnT-GGU, trnT-GGU-psbD, ndhC-trnV-UCA, ycf1, ndhI-ndhG, trnL-UGA-rpl32, rpl32-ndhF, and ndhF-ycf1 fragments, aiding in variety identification. Phylogenetic analysis revealed consistent results between maximum likelihood and Bayesian inference trees, showing that the four medicinal Chrysanthemum cultivars, along with their wild counterparts and related species, evolved as a monophyletic group, forming a sister clade to Artemisia and Ajania. Among the six Chrysanthemum species, the wild Chrysanthemum diverged first (Posterior probability = 1, bootstrap = 1,000), followed by Ajania, while C. indicum and C. morifolium clustered together (Bootstrap = 100), indicating their closest genetic relationship. The chloroplast whole-genome data and characteristic information provided in this study can be used for variety identification, genetic conservation, and phylogenetic analysis within the family Asteraceae.
Collapse
Affiliation(s)
- Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chun Wang
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ling Meng
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jie Meng
- Jiuzhou Fangyuan Pharmaceutical Co., Ltd., Anhui Modern Industry Research Institute of Traditional Chinese Medicine, Bozhou, 236821, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China.
| |
Collapse
|
12
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Abbasi-Vineh MA, Emadpour M. The First Introduction of an Exogenous 5' Untranslated Region for Control of Plastid Transgene Expression in Chlamydomonas reinhardtii. Mol Biotechnol 2024:10.1007/s12033-024-01279-3. [PMID: 39271617 DOI: 10.1007/s12033-024-01279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
The utilization of heterologous 5' untranslated regions (5'UTRs) for expressing foreign proteins in the chloroplast of Chlamydomonas reinhardtii (C. reinhardtii) has posed a persistent challenge over the years. This challenge stems from the lack of a defined and comprehensive set of translational cis-elements responsible for stability, ribosome binding, and translation initiation, which are mediated by trans-acting factors native to C. reinhardtii. In the current study, we aimed to address this bottleneck by employing the 5'UTR from gene 10 of the T7 bacteriophage (T7g10 5'UTR), fused to the promoter of C. reinhardtii small subunit ribosomal RNA (rrnS), to facilitate the translation of a reporter gene, YFP. Using a chimeric construct, the YFP mRNA was efficiently translated utilizing the heterologous T7g10 5'UTR. Furthermore, the accumulation of YFP protein under the control of the T7g10 5'UTR was approximately one third of that observed under the control of the endogenous psaA promoter/5'UTR in the C. reinhardtii chloroplast. The results of computational analyses demonstrated that the T7g10 5'UTR sequence shares common elements with the endogenous 5'UTRs of the chloroplast genes. Moreover, the findings of the current study highlighted the potential of employing bacteriophage 5'UTRs for the foreign protein accumulation from the chloroplast genome of C. reinhardtii.
Collapse
Affiliation(s)
- Mohammad Ali Abbasi-Vineh
- Department of Agricultural Biotechnology, Tarbiat Modares University (TMU), 1497713111, Tehran, Iran
| | - Masoumeh Emadpour
- Department of Agricultural Biotechnology, Tarbiat Modares University (TMU), 1497713111, Tehran, Iran.
| |
Collapse
|
14
|
Sun Y, Bakhtiari S, Valente-Paterno M, Wu Y, Nishimura Y, Shen W, Law C, Dhaliwal J, Dai D, Bui KH, Zerges W. Chloroplast biogenesis involves spatial coordination of nuclear and organellar gene expression in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:112-123. [PMID: 38709497 PMCID: PMC11376380 DOI: 10.1093/plphys/kiae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
The localization of translation can direct the polypeptide product to the proper intracellular compartment. Our results reveal translation by cytosolic ribosomes on a domain of the chloroplast envelope in the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii). We show that this envelope domain of isolated chloroplasts retains translationally active ribosomes and mRNAs encoding chloroplast proteins. This domain is aligned with localized translation by chloroplast ribosomes in the translation zone, a chloroplast compartment where photosystem subunits encoded by the plastid genome are synthesized and assembled. Roles of localized translation in directing newly synthesized subunits of photosynthesis complexes to discrete regions within the chloroplast for their assembly are suggested by differences in localization on the chloroplast of mRNAs encoding either subunit of the light-harvesting complex II or the small subunit of Rubisco. Transcription of the chloroplast genome is spatially coordinated with translation, as revealed by our demonstration of a subpopulation of transcriptionally active chloroplast nucleoids at the translation zone. We propose that the expression of chloroplast proteins by the nuclear-cytosolic and organellar genetic systems is organized in spatially aligned subcompartments of the cytoplasm and chloroplast to facilitate the biogenesis of the photosynthetic complexes.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Shiva Bakhtiari
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Melissa Valente-Paterno
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Yanxia Wu
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Graduate School of Sciences, Koyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto-shi 606-8502, Japan
| | - Weike Shen
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Christopher Law
- Centre for Microscopy and Cell Imaging, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - James Dhaliwal
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - William Zerges
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
15
|
Wang C, Xing A, Li Y, Wang X, Wang X, Xu X, An G, Hu Z. Dominant-negative chaperonin mutation ptCPN60α1 S57F uncovers redundancy in chloroplast rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2937-2950. [PMID: 39115043 DOI: 10.1111/tpj.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/13/2024] [Indexed: 11/15/2024]
Abstract
The biogenesis of functional forms of chloroplast ribosomal RNAs (rRNAs) is crucial for the translation of chloroplast mRNAs into polypeptides. However, the molecular mechanisms underlying the proper processing and maturation of chloroplast rRNA species are poorly understood. Through a genetic approach, we isolated and characterized an Arabidopsis mutant, α1-4, harboring a missense mutation in the plastid chaperonin-60α1 gene. Using allelism tests and transgenic manipulation, we determined functional redundancy among ptCPN60 subunits. The ptCPN60α1S57F mutation caused specific defects in the formation of chloroplast rRNA species, including 23S, 5S, and 4.5S rRNAs, but not 16S rRNAs. Allelism tests suggested that the dysfunctional ptCPN60α1S57F competes with other members of the ptCPN60 family. Indeed, overexpression of the ptCPN60α1S57F protein in wild-type plants mimicked the phenotypes observed in the α1-4 mutant, while increasing the endogenous transcriptional levels of ptCPN60α2, β1, β2, and β3 in the α1-4 mutant partially mitigated the abnormal fragmentation processing of chloroplast 23S, 5S, and 4.5S rRNAs. Furthermore, we demonstrated functional redundancy between ptCPN60β1 and ptCPN60β2 in chloroplast rRNA processing through double-mutant analysis. Collectively, our data reveal a novel physiological role of ptCPN60 subunits in generating the functional rRNA species of the large 50S ribosomal subunit in Arabidopsis chloroplasts.
Collapse
Affiliation(s)
- Chunfei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Aiming Xing
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xingsong Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqing Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiumei Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Guoyong An
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Zhubing Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| |
Collapse
|
16
|
Sun T, Tang Y, Zhou L, Qiao X, Ma X, Qin H, Han Y, Sui C. Characterization of the complete chloroplast genome of Rhodiola sachalinensis and comparative analysis with its congeneric plants. FEBS Open Bio 2024; 14:1340-1355. [PMID: 38965647 PMCID: PMC11301261 DOI: 10.1002/2211-5463.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Rhodiola, belonging to the Crassulaceae family, is a perennial herbaceous plant genus. There are about 90 Rhodiola species worldwide, some of which have been reported to have medicinal properties. Rhodiola sachalinensis is a perennial medicinal herb within this genus and, in the present study, its chloroplast genome was sequenced, assembled, annotated and compared with 24 other Rhodiola species. The results obtained show that the chloroplast genome of R. sachalinensis is 151 595 bp long and has a CG content of 37.7%. The inverted repeats (IR) region of the Rhodiola chloroplast genome is the most conserved region, with the main differences being observed in the ycf1 and ndhF genes at the IRb-small single copy boundary, and rps19 and trnH genes at the IRa-large single copy boundary. Phylogenetic analysis showed that Rhodiola species form two major clades, and species with recorded medicinal properties, clustered together in one branch except for R. dumulosa. Within the genus, R. sachalinensis is most closely related to Rhodiola rosea, although comparative analyses showed that only R. sachalinensis and Rhodiola subopposita contained the psbZ gene, which encodes a highly conserved protein subunit of the Photosystem II core complex. Overall, the present study contributes to the understanding of the chloroplast genome of Rhodiola species, and provides a theoretical basis for the study of their genetic diversity and possible use as medicinal plants.
Collapse
Affiliation(s)
- Tianqi Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Yuman Tang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Lei Zhou
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Xu Qiao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Xuan Ma
- New Cicon Pharmaceutical Co., LtdUrumqiChina
| | - Huaxia Qin
- New Cicon Pharmaceutical Co., LtdUrumqiChina
| | - Yu Han
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| |
Collapse
|
17
|
Wu J, Gao Y, Wang J, Guo A, Qin N, Xing G, Li S. Comparative analysis of chloroplast genome and evolutionary history of Hemerocallis. Front Genet 2024; 15:1433548. [PMID: 39130749 PMCID: PMC11310003 DOI: 10.3389/fgene.2024.1433548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 08/13/2024] Open
Abstract
Members of the genus Hemerocallis have significant value as ornamental, edible, and medicinal plants, particularly in China, where they have been utilized for thousands of years as both a vegetable and Traditional Chinese Medicine. Hemerocallis species exhibit strict control over flowering time, with individuals flowering either diurnally or nocturnally. However, our understanding of the evolutionary history of this genus, especially concerning important horticultural traits, remains limited. In this study, sequencing and assembly efforts were conducted on 73 samples within the Hemerocallis genus. All accessions were classified into two distinct groups based on their diurnal (daylilies) or nocturnal (nightlilies) flowering habits. Comparative analysis of the chloroplast genomes from these two groups identified fifteen variant hotspot regions, including fourteen SNPs and one deletion, which hold promise for the development of molecular markers for interspecific identification. Phylogenetic trees, generated through both maximum-likelihood and Bayesian inference methods using 76 shared protein-coding sequences, revealed that diurnal flowering evolved prior to nocturnal flowering. The divergence between the two groups is estimated to have occurred approximately 0.82 MYA (95% CI: 0.35-1.45 MYA). The ancestral state of Hemerocallis is hypothesized to have featured diurnal flowering with orange yellow petals. This study marks the first reconstruction of the evolutionary history and ancestral state of the genus Hemerocallis. The findings contribute significantly to our understanding of the adaptation and speciation history within the genus.
Collapse
Affiliation(s)
- Jiang Wu
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Yang Gao
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Aihua Guo
- Department of Life Science, Lyuliang University, Lüliang, China
| | - Nannan Qin
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
- Datong Daylily Industrial Development Research Institute, Datong, China
| | - Sen Li
- College of Horticulture, Shanxi Agriculture University, Taiyuan, China
- Datong Daylily Industrial Development Research Institute, Datong, China
| |
Collapse
|
18
|
Luo L, Qu Q, Lin H, Chen J, Lin Z, Shao E, Lin D. Exploring the Evolutionary History and Phylogenetic Relationships of Giant Reed ( Arundo donax) through Comprehensive Analysis of Its Chloroplast Genome. Int J Mol Sci 2024; 25:7936. [PMID: 39063178 PMCID: PMC11277011 DOI: 10.3390/ijms25147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Giant reed (Arundo donax) is widely distributed across the globe and is considered an important energy crop. This study presents the first comprehensive analysis of the chloroplast genome of giant reed, revealing detailed characteristics of this species' chloroplast genome. The chloroplast genome has a total length of 137,153 bp, containing 84 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, with a GC content of 39%. Functional analysis indicates that a total of 45 photosynthesis-related genes and 78 self-replication-related genes were identified, which may be closely associated with its adaptability and growth characteristics. Phylogenetic analysis confirmed that Arundo donax cv. Lvzhou No.1 belongs to the Arundionideae clade and occupies a distinct evolutionary position compared to other Arundo species. The findings of this study not only enhance our understanding of the giant reed genome but also provide valuable genetic resources for its application in biotechnology, bioenergy crop development, and ecological restoration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ensi Shao
- Juncao Science and Ecology College, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Q.Q.); (H.L.); (J.C.); (Z.L.)
| | - Dongmei Lin
- Juncao Science and Ecology College, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Q.Q.); (H.L.); (J.C.); (Z.L.)
| |
Collapse
|
19
|
Huo Y, Cheng M, Tang M, Zhang M, Yang X, Zheng Y, Zhao T, He P, Yu J. GhCTSF1, a short PPR protein with a conserved role in chloroplast development and photosynthesis, participates in intron splicing of rpoC1 and ycf3-2 transcripts in cotton. PLANT COMMUNICATIONS 2024; 5:100858. [PMID: 38444162 PMCID: PMC11211521 DOI: 10.1016/j.xplc.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Cotton is one of the most important textile fibers worldwide. As crucial agronomic traits, leaves play an essential role in the growth, disease resistance, fiber quality, and yield of cotton plants. Pentatricopeptide repeat (PPR) proteins are a large family of nuclear-encoded proteins involved in organellar or nuclear RNA metabolism. Using a virus-induced gene silencing assay, we found that cotton plants displayed variegated yellow leaf phenotypes with decreased chlorophyll content when expression of the PPR gene GhCTSF1 was silenced. GhCTSF1 encodes a chloroplast-localized protein that contains only two PPR motifs. Disruption of GhCTSF1 substantially reduces the splicing efficiency of rpoC1 intron 1 and ycf3 intron 2. Loss of function of the GhCTSF1 ortholog EMB1417 causes splicing defects in rpoC1 and ycf3-2, leading to impaired chloroplast structure and decreased photosynthetic rates in Arabidopsis. We also found that GhCTSF1 interacts with two splicing factors, GhCRS2 and GhWTF1. Defects in GhCRS2 and GhWTF1 severely affect intron splicing of rpoC1 and ycf3-2 in cotton, leading to defects in chloroplast development and a reduction in photosynthesis. Our results suggest that GhCTSF1 is specifically required for splicing rpoC1 and ycf3-2 in cooperation with GhCRS2 and GhWTF1.
Collapse
Affiliation(s)
- Yuzhu Huo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxue Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaofan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yating Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
20
|
Hu X, Li Y, Meng F, Duan Y, Sun M, Yang S, Liu H. Analysis of chloroplast genome characteristics and codon usage bias in 14 species of Annonaceae. Funct Integr Genomics 2024; 24:109. [PMID: 38797780 DOI: 10.1007/s10142-024-01389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
For the study of species evolution, chloroplast gene expression, and transformation, the chloroplast genome is an invaluable resource. Codon usage bias (CUB) analysis is a tool that is utilized to improve gene expression and investigate evolutionary connections in genetic transformation. In this study, we analysed chloroplast genome differences, codon usage patterns and the sources of variation on CUB in 14 Annonaceae species using bioinformatics tools. The study showed that there was a significant variation in both gene sizes and numbers between the 14 species, but conservation was still maintained. It's worth noting that there were noticeable differences in the IR/SC sector boundary and the types of SSRs among the 14 species. The mono-nucleotide repeat type was the most common, with A/T repeats being more prevalent than G/C repeats. Among the different types of repeats, forward and palindromic repeats were the most abundant, followed by reverse repeats, and complement repeats were relatively rare. Codon composition analysis revealed that all 14 species had a frequency of GC lower than 50%. Additionally, it was observed that the proteins in-coding sequences of chloroplast genes tend to end with A/T at the third codon position. Among these species, 21 codons exhibited bias (RSCU > 1), and there were 8 high-frequency (HF) codons and 5 optimal codons that were identical across the species. According to the ENC-plot and Neutrality plot analysis, natural selection had less impact on the CUB of A. muricate and A. reticulata. Based on the PR2-plot, it was evident that base G had a higher frequency than C, and T had a higher frequency A. The correspondence analysis (COA) revealed that codon usage patterns different in Annonaceae.
Collapse
Affiliation(s)
- Xiang Hu
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, 651300, China
| | - Yaqi Li
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, 678000, China
| | - Fuxuan Meng
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, 651300, China
| | - Yuanjie Duan
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, 651300, China
| | - Manying Sun
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, 651300, China
| | - Shiying Yang
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, 651300, China
| | - Haigang Liu
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, 651300, China.
| |
Collapse
|
21
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Xiao F, Zhao Y, Wang X, Jian X. Characterization of the chloroplast genome of Gleditsia species and comparative analysis. Sci Rep 2024; 14:4262. [PMID: 38383559 PMCID: PMC10881578 DOI: 10.1038/s41598-024-54608-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
The genus Gleditsia has significant medicinal and economic value, but information about the chloroplast genomic characteristics of Gleditsia species has been limited. Using the Illumina sequencing, we assembled and annotated the whole chloroplast genomes of seven Gleditsia species (Gleditsia sinensis, Gleditsia japonica var. delavayi (G. delavayi), G. fera, G. japonica, G. microphylla, Fructus Gleditsiae Abnormalis (Zhū Yá Zào), G. microphylla mutant). The assembled genomes revealed that Gleditsia species have a typical circular tetrad structure, with genome sizes ranging from 162,746 to 170,907 bp. Comparative genomic analysis showed that most (65.8-75.8%) of the abundant simple sequence repeats in Gleditsia and Gymnocladus species were located in the large single copy region. The Gleditsia chloroplast genome prefer T/A-ending codons and avoid C/G-ending codons, positive selection was acting on the rpoA, rpl20, atpB, ndhA and ycf4 genes, most of the chloroplast genes of Gleditsia species underwent purifying selection. Expansion and contraction of the inverted repeat (IR)/single copy (SC) region showed similar patterns within the Gleditsia genus. Polymorphism analysis revealed that coding regions were more conserved than non-coding regions, and the IR region was more conserved than the SC region. Mutational hotspots were mostly found in intergenic regions such as "rps16-trnQ", "trnT-trnL", "ndhG-ndhI", and "rpl32-trnL" in Gleditsia. Phylogenetic analysis showed that G. fera is most closely related to G. sinensis,G. japonica and G. delavayi are relatively closely related. Zhū Yá Zào can be considered a bud mutation of the G. sinensis. The albino phenotype of G. microphylla mutant is not caused by variations in the chloroplast genome, and that the occurrence of the albino phenotype may be due to mutations in chloroplast-related genes involved in splicing or localization functions. This study will help us enhance our exploration of the genetic evolution and geographical origins of the Gleditsia genus.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Yanji, 133002, Jilin, China
| |
Collapse
|
23
|
Mahapatra K, Mukherjee A, Suyal S, Dar MA, Bhagavatula L, Datta S. Regulation of chloroplast biogenesis, development, and signaling by endogenous and exogenous cues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:167-183. [PMID: 38623168 PMCID: PMC11016055 DOI: 10.1007/s12298-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Arpan Mukherjee
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Shikha Suyal
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Mansoor Ali Dar
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | | | - Sourav Datta
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
24
|
Zheng S, Yang L, Zheng H, Wu J, Zhou Z, Tian J. Identification of Hub Genes and Physiological Effects of Overexpressing the Photosynthesis-Related Gene Soly720 in Tomato under High-CO 2 Conditions. Int J Mol Sci 2024; 25:757. [PMID: 38255831 PMCID: PMC10815203 DOI: 10.3390/ijms25020757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Changes in the atmospheric CO2 concentration influence plant growth and development by affecting the morphological structure and photosynthetic performance. Despite evidence for the macro-effects of elevated CO2 concentrations on plant morphology and yield in tomato, the gene regulatory network and key genes related to cross-regulation have not been reported. To identify the hub genes and metabolic pathways involved in the response of tomato to CO2 enrichment, weighted gene co-expression network analysis was conducted using gene expression profiles obtained by RNA sequencing. The role of the photosynthesis-related gene Soly720 (Solyc01g007720) in CO2-enriched tomato plants was explored. Tomato plants responded to CO2 enrichment primarily through RNA-related pathways and the metabolism of amino acids, fatty acids, and carbohydrates. The hub genes in co-expression networks were associated with plant growth and development, including cellular components and photosynthesis. Compared to wild-type plants, transgenic plants overexpressing the Soly720 gene exhibited 13.4%, 5.5%, 8.9%, and 4.1% increases in plant height, stem diameter, leaf length, and leaf width, respectively, under high-CO2 conditions. The morphological improvements in transgenic plants were accompanied by enhancement of photosynthetic performance in terms of chlorophyll contents, photosynthetic characteristics, and key enzyme activities. This study elucidates the response network of tomato to CO2 enrichment and demonstrates the regulatory role of Soly720 in photosynthesis under high-CO2 conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jieyun Tian
- Horticulture College, Shanxi Agricultural University, Jinzhong 030801, China; (S.Z.); (L.Y.); (H.Z.); (J.W.); (Z.Z.)
| |
Collapse
|
25
|
Xu Y, Wu Z, Shen W, Zhou H, Li H, He X, Li R, Qin B. Disruption of the rice ALS1 localized in chloroplast causes seedling-lethal albino phenotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111925. [PMID: 37981085 DOI: 10.1016/j.plantsci.2023.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Chloroplasts are the organelles responsible for photosynthesis and regulate normal plant growth. Although translation elongation factors play important roles in chloroplast development, functional studies of chloroplast translation elongation factors in higher plants remain very sparse. Here, we obtained a rice mutant exhibiting seedling-lethal albino phenotype and named it albino and lethal seedling 1 (als1). Consistently, low content of photosynthetic pigments, malformed chloroplasts and defective photosynthesis were observed in als1 mutant leaves. Map-based cloning experiment showed that als1 mutant had a T base insertion in Os02g0595700, causing a frame shift and premature stop codon. ALS1 encoded a GTP-binding protein EF-Tu, which acts as a translation elongation factor in chloroplast protein translation. ALS1 was found to be expressed throughout plant with highest expression level in young leaves. Moreover, ALS1 was located in chloroplast, whereas the truncated als1 could not normally be located in chloroplast. Additionally, the ALS1 mutation significantly influenced the expression of downstream genes, such as genes relevant to chlorophyll biosynthesis, photosynthesis as well as chloroplast development. These results show that ALS1 acts as a key regulator of chloroplast development and plant growth.
Collapse
Affiliation(s)
- Yibo Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Zishuai Wu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Haiyu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Hu Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China.
| |
Collapse
|
26
|
Zhao J, Chen H, Li G, Jumaturti MA, Yao X, Hu Y. Phylogenetics Study to Compare Chloroplast Genomes in Four Magnoliaceae Species. Curr Issues Mol Biol 2023; 45:9234-9251. [PMID: 37998755 PMCID: PMC10670740 DOI: 10.3390/cimb45110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Magnoliaceae, a family of perennial woody plants, contains several endangered species whose taxonomic status remains ambiguous. The study of chloroplast genome information can help in the protection of Magnoliaceae plants and confirmation of their phylogenetic relationships. In this study, the chloroplast genomes were sequenced, assembled, and annotated in Woonyoungia septentrionalis and three Michelia species (Michelia champaca, Michelia figo, and Michelia macclurei). Comparative analyses of genomic characteristics, repetitive sequences, and sequence differences were performed among the four Magnoliaceae plants, and phylogenetic relationships were constructed with twenty different magnolia species. The length of the chloroplast genomes varied among the four studied species ranging from 159,838 bp (Woonyoungia septentrionalis) to 160,127 bp (Michelia macclurei). Four distinct hotspot regions were identified based on nucleotide polymorphism analysis. They were petA-psbJ, psbJ-psbE, ndhD-ndhE, and rps15-ycf1. These gene fragments may be developed and utilized as new molecular marker primers. By using Liriodendron tulipifera and Liriodendron chinense as outgroups reference, a phylogenetic tree of the four Magnoliaceae species and eighteen other Magnoliaceae species was constructed with the method of Shared Coding Sequences (CDS). Results showed that the endangered species, W. septentrionalis, is relatively genetically distinct from the other three species, indicating the different phylogenetic processes among Magnoliaceae plants. Therefore, further genetic information is required to determine the relationships within Magnoliaceae. Overall, complete chloroplast genome sequences for four Magnoliaceae species reported in this paper have shed more light on phylogenetic relationships within the botanical group.
Collapse
Affiliation(s)
- Jianyun Zhao
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hu Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China;
| | - Gaiping Li
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Maimaiti Aisha Jumaturti
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xiaomin Yao
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Ying Hu
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning 530004, China; (J.Z.); (G.L.); (M.A.J.); (X.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
27
|
He H, Wang T, Tang C, Cao Z, Pu X, Li Y, Li X. Complete Chloroplast Genomes of Saussurea katochaete, Saussurea superba, and Saussurea stella: Genome Structures and Comparative and Phylogenetic Analyses. Genes (Basel) 2023; 14:2002. [PMID: 38002945 PMCID: PMC10670953 DOI: 10.3390/genes14112002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Saussurea plants are widely distributed in Asia and Europe; however, their complex phylogenetic relationships have led to many difficulties in phylogenetic studies and interspecific identification. In this study, we assembled, annotated, and analyzed the chloroplast genomes of three Saussurea plants: Saussurea katochaete, Saussurea superba, and Saussurea stella. The results showed that the full-length sequences of the three Saussurea plants were 152,561 bp, 151,452 bp, and 152,293 bp, respectively, which represent the typical quadripartite structure, and the genomes were relatively conserved. The gene annotation results showed that the chloroplast genomes of S. katochaete, S. superba, and S. stella were annotated with 128, 124, and 127 unique genes, respectively, which included 83, 80, and 83 protein-coding genes (PCGs), respectively, 37, 36, and 36 tRNA genes, respectively, and 8 rRNA genes. Moreover, 46, 45, and 43 SSR loci, respectively, and nine highly variable regions (rpl32-trnL-UAG, rpl32, ndhF-rpl32, ycf1, trnC-GCA-petN, trnC-GCA, rpcL, psbE-petL, and rpl16-trnG-UUG) were identified and could be used as potential molecular markers for population identification and phylogenetic study of Saussurea plants. Phylogenetic analyses strongly support the sisterhood of S. katochaete with S. superba and S. stella, and are all clustered with S. depsagensis, S. inversa, S. medusa, and S. gossipihora, of which S. gossipiphora is most closely related. Additionally, the phylogenetic results indicate a high frequency of differentiation among different species of Saussurea plants, and many different species or genera are morphologically very different from each other, which may be related to certain genetic material in the chloroplasts. This study provides an important reference for the identification of Saussurea plants and studies their evolution and phylogenetics.
Collapse
Affiliation(s)
- Hui He
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Tao Wang
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Chuyu Tang
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Zhengfei Cao
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Xiaojian Pu
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Yuling Li
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| |
Collapse
|
28
|
Bulle M, Sheri V, Aileni M, Zhang B. Chloroplast Genome Engineering: A Plausible Approach to Combat Chili Thrips and Other Agronomic Insect Pests of Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3448. [PMID: 37836188 PMCID: PMC10574609 DOI: 10.3390/plants12193448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The world population's growing demand for food is expected to increase dramatically by 2050. The agronomic productivity for food is severely affected due to biotic and abiotic constraints. At a global level, insect pests alone account for ~20% loss in crop yield every year. Deployment of noxious chemical pesticides to control insect pests always has a threatening effect on human health and environmental sustainability. Consequently, this necessitates for the establishment of innovative, environmentally friendly, cost-effective, and alternative means to mitigate insect pest management strategies. According to a recent study, using chloroplasts engineered with double-strand RNA (dsRNA) is novel successful combinatorial strategy deployed to effectively control the most vexing pest, the western flower thrips (WFT: Frankliniella occidentalis). Such biotechnological avenues allowed us to recapitulate the recent progress of research methods, such as RNAi, CRISPR/Cas, mini chromosomes, and RNA-binding proteins with plastid engineering for a plausible approach to effectively mitigate agronomic insect pests. We further discussed the significance of the maternal inheritance of the chloroplast, which is the major advantage of chloroplast genome engineering.
Collapse
Affiliation(s)
- Mallesham Bulle
- Agri Biotech Foundation, Agricultural University Campus, Rajendranagar, Hyderabad 500030, India
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Mahender Aileni
- Department of Biotechnology, Telangana University, Dichpally, Nizamabad 503322, India;
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| |
Collapse
|