1
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Rahimlou S, Hosseyni Moghadam MS, Gazis R, Karlsen-Ayala E, Bahram M, James TY, Tedersoo L. Unveiling root nodulation in Tribulus terrestris and Roystonea regia via metagenomics analysis. Mol Genet Genomics 2024; 300:9. [PMID: 39731654 DOI: 10.1007/s00438-024-02218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures. We collected root samples of Tribulus terrestris (Zygophyllaceae) and Roystonea regia from West Asia and the Caribbean, respectively. We conducted detailed morphological analyses of nodule-like structures, isolated and genome-sequenced the endophytes, and employed metagenomic techniques to identify the bacterial populations within these formations. We observed nodule-like structures in both plant species. Symbiosomes, which are hallmark structures of nodulating plants, were not detected. Metagenome sequence data analysis revealed potential nodulating and nitrogen-fixing bacteria in the nodule-like structures of both species. Canonical nodulation and nitrogen-fixation genes were identified in microbes associated with the nodules. However, the phylogenomic analysis showed that the bacteria isolated from T. terrestris and R. regia are within Gammaproteobacteria and Bacilli, which are not typically known as nodulating bacteria. The observed structures differ significantly from traditional nodules found in legumes and actinorhizal plants, suggesting unique characteristics with hosting nitrogen-fixing bacteria. Although bacteria identified through in silico analysis or culture are well-known nitrogen-fixers, their specific role in root nodule formation remains to be investigated.
Collapse
Affiliation(s)
- Saleh Rahimlou
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | | | - Romina Gazis
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32608, USA
| | - Elena Karlsen-Ayala
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32608, USA
- USDA Forest Service, Northern Research Station, Hamden, CT, USA
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
- Department of Agroecology, Aarhus University, Slagelse, 4200, Denmark
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
3
|
Yu H, Xiao A, Zou Z, Wu Q, Chen L, Zhang D, Sun Y, Wang C, Cao J, Zhu H, Zhang Z, Cao Y. Conserved cis-elements enable NODULES WITH ACTIVATED DEFENSE1 regulation by NODULE INCEPTION during nodulation. THE PLANT CELL 2024; 36:4622-4636. [PMID: 39136552 PMCID: PMC11448908 DOI: 10.1093/plcell/koae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/31/2024] [Indexed: 10/05/2024]
Abstract
Symbiotic nitrogen fixation within nitrogen-fixing clade (NFC) plants is thought to have arisen from a single gain followed by massive losses in the genomes of ancestral non-nodulating plants. However, molecular evidence supporting this model is limited. Here, we confirm through bioinformatic analysis that NODULES WITH ACTIVATED DEFENSE1 (NAD1) is present only in NFC plants and is thus an NFC-specific gene. Moreover, NAD1 was specifically expressed in nodules. We identified three conserved nodulation-associated cis-regulatory elements (NACE1-3) in the promoter of LjNAD1 from Lotus japonicus that are required for its nodule specific expression. A survey of NFC plants revealed that NACE1 and NACE2 are specific to the Fabales and Papilionoideae, respectively, while NACE3 is present in all NFC plants. Moreover, we found that nodule inception (NIN) directly binds to all three NACEs to activate NAD1 expression. Mutation of L. japonicus LjNAD1 resulted in the formation of abnormal symbiosomes with enlarged symbiosome space and frequent breakdown of bacteroids in nodules, resembling phenotypes reported for Medicago truncatula Mtnad1 and Mtnin mutants. These data point to NIN-NAD1 as an important module regulating rhizobial accommodation in nodules. The regulation of NAD1 by NIN in the NFC ancestor represent an important evolutionary adaptation for nodulation.
Collapse
Affiliation(s)
- Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Aifang Xiao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan 572024, China
| | - Zhongmin Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiujin Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dandan Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuzhang Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbo Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhongming Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Jhu MY, Feng J. The secret of self-fertilizing plants: NIN-NAD1's role in symbiotic nitrogen fixation. THE PLANT CELL 2024; 36:4291-4292. [PMID: 39167830 PMCID: PMC11448891 DOI: 10.1093/plcell/koae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Min-Yao Jhu
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB30LE, UK
| | - Jian Feng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
6
|
Adema K, Kohlen W. The symbiosome-a transient organelle in evolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3209-3213. [PMID: 38845354 PMCID: PMC11156803 DOI: 10.1093/jxb/erae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
This article comments on: Casaes PA, Ferreira dos Santos JM, Silva VC, Rhem MFK, Teixeira Cota MM, de Faria SM, Rando JG, James EK, Gross E. 2024. The radiation of nodulated Chamaecrista species from the rainforest into more diverse habitats has been accompanied by a reduction in growth form and a shift from fixation threads to symbiosomes. Journal of Experimental Botany 75, 3643-3662.
Collapse
Affiliation(s)
- Kelvin Adema
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster of Plant Developmental Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
7
|
Shen L, Feng J. NIN-at the heart of NItrogen-fixing Nodule symbiosis. FRONTIERS IN PLANT SCIENCE 2024; 14:1284720. [PMID: 38283980 PMCID: PMC10810997 DOI: 10.3389/fpls.2023.1284720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Legumes and actinorhizal plants establish symbiotic relationships with nitrogen-fixing bacteria, resulting in the formation of nodules. Nodules create an ideal environment for nitrogenase to convert atmospheric nitrogen into biological available ammonia. NODULE INCEPTION (NIN) is an indispensable transcription factor for all aspects of nodule symbiosis. Moreover, NIN is consistently lost in non-nodulating species over evolutions. Here we focus on recent advances in the signaling mechanisms of NIN during nodulation and discuss the role of NIN in the evolution of nitrogen-fixing nodule symbiosis.
Collapse
Affiliation(s)
- Lisha Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jian Feng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS−JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Song B, Ning W, Wei D, Jiang M, Zhu K, Wang X, Edwards D, Odeny DA, Cheng S. Plant genome resequencing and population genomics: Current status and future prospects. MOLECULAR PLANT 2023; 16:1252-1268. [PMID: 37501370 DOI: 10.1016/j.molp.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.
Collapse
Affiliation(s)
- Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Huazhong Agricultural University, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Kun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|