1
|
Seika P, Janikova M, Asokan S, Janovicova L, Csizmadia E, O’Connell M, Robson SC, Glickman J, Wegiel B. Free heme exacerbates colonic injury induced by anti-cancer therapy. Front Immunol 2023; 14:1184105. [PMID: 37342339 PMCID: PMC10277564 DOI: 10.3389/fimmu.2023.1184105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Gastrointestinal inflammation and bleeding are commonly induced by cancer radiotherapy and chemotherapy but mechanisms are unclear. We demonstrated an increased number of infiltrating heme oxygenase-1 positive (HO-1+) macrophages (Mø, CD68+) and the levels of hemopexin (Hx) in human colonic biopsies from patients treated with radiation or chemoradiation versus non-irradiated controls or in the ischemic intestine compared to matched normal tissues. The presence of rectal bleeding in these patients was also correlated with higher HO-1+ cell infiltration. To functionally assess the role of free heme released in the gut, we employed myeloid-specific HO-1 knockout (LysM-Cre : Hmox1flfl), hemopexin knockout (Hx-/-) and control mice. Using LysM-Cre : Hmox1flfl conditional knockout (KO) mice, we showed that a deficiency of HO-1 in myeloid cells led to high levels of DNA damage and proliferation in colonic epithelial cells in response to phenylhydrazine (PHZ)-induced hemolysis. We found higher levels of free heme in plasma, epithelial DNA damage, inflammation, and low epithelial cell proliferation in Hx-/- mice after PHZ treatment compared to wild-type mice. Colonic damage was partially attenuated by recombinant Hx administration. Deficiency in Hx or Hmox1 did not alter the response to doxorubicin. Interestingly, the lack of Hx augmented abdominal radiation-mediated hemolysis and DNA damage in the colon. Mechanistically, we found an altered growth of human colonic epithelial cells (HCoEpiC) treated with heme, corresponding to an increase in Hmox1 mRNA levels and heme:G-quadruplex complexes-regulated genes such as c-MYC, CCNF, and HDAC6. Heme-treated HCoEpiC cells exhibited growth advantage in the absence or presence of doxorubicin, in contrast to poor survival of heme-stimulated RAW247.6 Mø. In summary, our data indicate that accumulation of heme in the colon following hemolysis and/or exposure to genotoxic stress amplifies DNA damage, abnormal proliferation of epithelial cells, and inflammation as a potential etiology for gastrointestinal syndrome (GIS).
Collapse
Affiliation(s)
- Philippa Seika
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Sahana Asokan
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mckenzie O’Connell
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Zhang T, Zhang G, Chen X, Chen Z, Tan AY, Lin A, Zhang C, Torres LK, Bajrami S, Zhang T, Zhang G, Xiang JZ, Hissong EM, Chen YT, Li Y, Du YCN. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett 2022; 546:215831. [PMID: 35868533 DOI: 10.1016/j.canlet.2022.215831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Low-dose carbon monoxide (CO) is under investigation in clinical trials to treat non-cancerous diseases and has excellent safety profiles. Due to the early detection and cancer awareness, increasing cancer patients are diagnosed at early stages and potentially curative surgical resection can be done. However, many patients ultimately experience recurrence. Here, we evaluate the therapeutic effect of CO on cancer metastatic progression. We show that 250 ppm CO inhibits migration of multiple types of cancer cell lines including breast, pancreatic, colon, prostate, liver, and lung cancer and reduces the ability to adhere to fibronectin. We demonstrate that in mouse models, 250 ppm inhaled CO inhibits lung metastasis of breast cancer and liver metastasis of pancreatic cancer. Moreover, low-dose CO suppresses recurrence and increases survival after surgical removal of primary pancreatic cancer in mice. Mechanistically, low-dose CO blocks transcription of heme importers, leading to diminished intracellular heme levels and a heme-regulated enzyme, cytochrome P4501B1 (CYP1B1). Either supplementing heme or overexpressing CYP1B1 reverses the anti-migration effect of low-dose CO. Taken together, low-dose CO therapy inhibits cell migration, reduces adhesion to fibronectin, prevents disseminated cancer cells from expanding into gross metastases, and improves survival in pre-clinical mouse models of metastasis.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anthony Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cheryl Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lisa K Torres
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Sandi Bajrami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Erika M Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
3
|
HO-1 and Heme: G-Quadruplex Interaction Choreograph DNA Damage Responses and Cancer Growth. Cells 2021; 10:cells10071801. [PMID: 34359970 PMCID: PMC8307061 DOI: 10.3390/cells10071801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Many anti-cancer therapeutics lead to the release of danger associated pattern molecules (DAMPs) as the result of killing large numbers of both normal and transformed cells as well as lysis of red blood cells (RBC) (hemolysis). Labile heme originating from hemolysis acts as a DAMP while its breakdown products exert varying immunomodulatory effects. Labile heme is scavenged by hemopexin (Hx) and processed by heme oxygenase-1 (HO-1, Hmox1), resulting in its removal and the generation of biliverdin/bilirubin, carbon monoxide (CO) and iron. We recently demonstrated that labile heme accumulates in cancer cell nuclei in the tumor parenchyma of Hx knockout mice and contributes to the malignant phenotype of prostate cancer (PCa) cells and increased metastases. Additionally, this work identified Hx as a tumor suppressor gene. Direct interaction of heme with DNA G-quadruplexes (G4) leads to altered gene expression in cancer cells that regulate transcription, recombination and replication. Here, we provide new data supporting the nuclear role of HO-1 and heme in modulating DNA damage response, G4 stability and cancer growth. Finally, we discuss an alternative role of labile heme as a nuclear danger signal (NDS) that regulates gene expression and nuclear HO-1 regulated DNA damage responses stimulated by its interaction with G4.
Collapse
|