1
|
Lyons A, Brown J, Davenport KM. Single-Cell Sequencing Technology in Ruminant Livestock: Challenges and Opportunities. Curr Issues Mol Biol 2024; 46:5291-5306. [PMID: 38920988 PMCID: PMC11202421 DOI: 10.3390/cimb46060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Advancements in single-cell sequencing have transformed the genomics field by allowing researchers to delve into the intricate cellular heterogeneity within tissues at greater resolution. While single-cell omics are more widely applied in model organisms and humans, their use in livestock species is just beginning. Studies in cattle, sheep, and goats have already leveraged single-cell and single-nuclei RNA-seq as well as single-cell and single-nuclei ATAC-seq to delineate cellular diversity in tissues, track changes in cell populations and gene expression over developmental stages, and characterize immune cell populations important for disease resistance and resilience. Although challenges exist for the use of this technology in ruminant livestock, such as the precise annotation of unique cell populations and spatial resolution of cells within a tissue, there is vast potential to enhance our understanding of the cellular and molecular mechanisms underpinning traits essential for healthy and productive livestock. This review intends to highlight the insights gained from published single-cell omics studies in cattle, sheep, and goats, particularly those with publicly accessible data. Further, this manuscript will discuss the challenges and opportunities of this technology in ruminant livestock and how it may contribute to enhanced profitability and sustainability of animal agriculture in the future.
Collapse
|
2
|
Kopitar AN, Repas J, Janžič L, Bizjak M, Vesel TT, Emeršič N, Avramovič MZ, Ihan A, Avčin T, Pavlin M. Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Front Immunol 2023; 14:1157702. [PMID: 37153551 PMCID: PMC10157053 DOI: 10.3389/fimmu.2023.1157702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.
Collapse
Affiliation(s)
- Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Janžič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Bizjak
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tina Tajnšek Vesel
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Emeršič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zajc Avramovič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avčin
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Department of Pediatrics, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| |
Collapse
|
3
|
Godoy-Tena G, Barmada A, Morante-Palacios O, de la Calle-Fabregat C, Martins-Ferreira R, Ferreté-Bonastre AG, Ciudad L, Ruiz-Sanmartín A, Martínez-Gallo M, Ferrer R, Ruiz-Rodriguez JC, Rodríguez-Ubreva J, Vento-Tormo R, Ballestar E. Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Med 2022; 14:134. [PMID: 36443794 PMCID: PMC9706884 DOI: 10.1186/s13073-022-01137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND COVID-19 manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic and mild to severe and critical. Severe and critical COVID-19 patients are characterized by marked changes in the myeloid compartment, especially monocytes. However, little is known about the epigenetic alterations that occur in these cells during hyperinflammatory responses in severe COVID-19 patients. METHODS In this study, we obtained the DNA methylome and transcriptome of peripheral blood monocytes from severe COVID-19 patients. DNA samples extracted from CD14 + CD15- monocytes of 48 severe COVID-19 patients and 11 healthy controls were hybridized on MethylationEPIC BeadChip arrays. In parallel, single-cell transcriptomics of 10 severe COVID-19 patients were generated. CellPhoneDB was used to infer changes in the crosstalk between monocytes and other immune cell types. RESULTS We observed DNA methylation changes in CpG sites associated with interferon-related genes and genes associated with antigen presentation, concordant with gene expression changes. These changes significantly overlapped with those occurring in bacterial sepsis, although specific DNA methylation alterations in genes specific to viral infection were also identified. We also found these alterations to comprise some of the DNA methylation changes occurring during myeloid differentiation and under the influence of inflammatory cytokines. A progression of DNA methylation alterations in relation to the Sequential Organ Failure Assessment (SOFA) score was found to be related to interferon-related genes and T-helper 1 cell cytokine production. CellPhoneDB analysis of the single-cell transcriptomes of other immune cell types suggested the existence of altered crosstalk between monocytes and other cell types like NK cells and regulatory T cells. CONCLUSION Our findings show the occurrence of an epigenetic and transcriptional reprogramming of peripheral blood monocytes, which could be associated with the release of aberrant immature monocytes, increased systemic levels of pro-inflammatory cytokines, and changes in immune cell crosstalk in these patients.
Collapse
Affiliation(s)
- Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Anna G Ferreté-Bonastre
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartín
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d'Hebron University Hospital and Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, UK
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241, China.
| |
Collapse
|
4
|
Lee H, Joo JY, Sohn DH, Kang J, Yu Y, Park HR, Kim YH. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy. J Transl Med 2022; 20:504. [PMID: 36329504 PMCID: PMC9635198 DOI: 10.1186/s12967-022-03702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Periodontitis is a major inflammatory disease of the oral mucosa that is not limited to the oral cavity but also has systemic consequences. Although the importance of chronic periodontitis has been emphasized, the systemic immune response induced by periodontitis and its therapeutic effects remain elusive. Here, we report the transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with periodontitis. Methods Using single-cell RNA sequencing, we profiled PBMCs from healthy controls and paired pre- and post-treatment patients with periodontitis. We extracted differentially expressed genes and biological pathways for each cell type and calculated activity scores reflecting cellular characteristics. Intercellular crosstalk was classified into therapy-responsive and -nonresponsive pathways. Results We analyzed pan-cellular differentially expressed genes caused by periodontitis and found that most cell types showed a significant increase in CRIP1, which was further supported by the increased levels of plasma CRIP1 observed in patients with periodontitis. In addition, activated cell type-specific ligand-receptor interactions, including the BTLA, IFN-γ, and RESISTIN pathways, were prominent in patients with periodontitis. Both the BTLA and IFN-γ pathways returned to similar levels in healthy controls after periodontal therapy, whereas the RESISTIN pathway was still activated even after therapy. Conclusion These data collectively provide insights into the transcriptome changes and molecular interactions that are responsive to periodontal treatment. We identified periodontitis-specific systemic inflammatory indicators and suggest unresolved signals of non-surgical therapy as future therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03702-2.
Collapse
Affiliation(s)
- Hansong Lee
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Ji-Young Joo
- grid.262229.f0000 0001 0719 8572Department of Periodontology, School of Dentistry, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Dong Hyun Sohn
- grid.262229.f0000 0001 0719 8572Department of Microbiology and Immunology, School of Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Junho Kang
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Yeuni Yu
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Hae Ryoun Park
- grid.262229.f0000 0001 0719 8572Department of Oral Pathology, School of Dentistry, Pusan National University, 49 Busandaehak- ro, 50612 Yangsan, Republic of Korea
| | - Yun Hak Kim
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Department of Anatomy, School of Medicine, Pusan National University, 49 Busandaehak-ro, 50612 Yangsan, Republic of Korea
| |
Collapse
|
5
|
Huang Y, Shin JE, Xu AM, Yao C, Joung S, Wu M, Zhang R, Shin B, Foley J, Mahov SB, Modes ME, Ebinger JE, Driver M, Braun JG, Jefferies CA, Parimon T, Hayes C, Sobhani K, Merchant A, Gharib SA, Jordan SC, Cheng S, Goodridge HS, Chen P. Evidence of premature lymphocyte aging in people with low anti-spike antibody levels after BNT162b2 vaccination. iScience 2022; 25:105209. [PMID: 36188190 PMCID: PMC9510055 DOI: 10.1016/j.isci.2022.105209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
SARS-CoV-2 vaccines have unquestionably blunted the overall impact of the COVID-19 pandemic, but host factors such as age, sex, obesity, and other co-morbidities can affect vaccine efficacy. We identified individuals in a relatively healthy population of healthcare workers (CORALE study cohort) who had unexpectedly low peak anti-spike receptor binding domain (S-RBD) antibody levels after receiving the BNT162b2 vaccine. Compared to matched controls, "low responders" had fewer spike-specific antibody-producing B cells after the second and third/booster doses. Moreover, their spike-specific T cell receptor (TCR) repertoire had less depth and their CD4+ and CD8+T cell responses to spike peptide stimulation were less robust. Single cell transcriptomic evaluation of peripheral blood mononuclear cells revealed activation of aging pathways in low responder B and CD4+T cells that could underlie their attenuated anti-S-RBD antibody production. Premature lymphocyte aging may therefore contribute to a less effective humoral response and could reduce vaccination efficacy.
Collapse
Affiliation(s)
- Yapei Huang
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliana E. Shin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander M. Xu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandy Joung
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Min Wu
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruan Zhang
- Comprehensive Transplant Center, Transplant Immunology Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bongha Shin
- Comprehensive Transplant Center, Transplant Immunology Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joslyn Foley
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simeon B. Mahov
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew E. Modes
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph E. Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Driver
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jonathan G. Braun
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A. Jefferies
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Hayes
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sina A. Gharib
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stanley C. Jordan
- Comprehensive Transplant Center, Transplant Immunology Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Al-Mustanjid M, Mahmud SMH, Akter F, Rahman MS, Hossen MS, Rahman MH, Moni MA. Systems biology models to identify the influence of SARS-CoV-2 infections to the progression of human autoimmune diseases. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101003. [PMID: 35818398 PMCID: PMC9259025 DOI: 10.1016/j.imu.2022.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been circulating since 2019, and its global dominance is rising. Evidences suggest the respiratory illness SARS-CoV-2 has a sensitive affect on causing organ damage and other complications to the patients with autoimmune diseases (AD), posing a significant risk factor. The genetic interrelationships and molecular appearances between SARS-CoV-2 and AD are yet unknown. We carried out the transcriptomic analytical framework to delve into the SARS-CoV-2 impacts on AD progression. We analyzed both gene expression microarray and RNA-Seq datasets from SARS-CoV-2 and AD affected tissues. With neighborhood-based benchmarks and multilevel network topology, we obtained dysfunctional signaling and ontological pathways, gene disease (diseasesome) association network and protein-protein interaction network (PPIN), uncovered essential shared infection recurrence connectivities with biological insights underlying between SARS-CoV-2 and AD. We found a total of 77, 21, 9, 54 common DEGs for SARS-CoV-2 and inflammatory bowel disorder (IBD), SARS-CoV-2 and rheumatoid arthritis (RA), SARS-CoV-2 and systemic lupus erythematosus (SLE) and SARS-CoV-2 and type 1 diabetes (T1D). The enclosure of these common DEGs with bimolecular networks revealed 10 hub proteins (FYN, VEGFA, CTNNB1, KDR, STAT1, B2M, CD3G, ITGAV, TGFB3). Drugs such as amlodipine besylate, vorinostat, methylprednisolone, and disulfiram have been identified as a common ground between SARS-CoV-2 and AD from drug repurposing investigation which will stimulate the optimal selection of medications in the battle against this ongoing pandemic triggered by COVID-19.
Collapse
Affiliation(s)
- Md Al-Mustanjid
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - S M Hasan Mahmud
- Department of Computer Science, American International University-Bangladesh, Dhaka, 1229, Bangladesh
| | - Farzana Akter
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - Md Shazzadur Rahman
- Department of Computer Science & Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - Md Sajid Hossen
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science and Engineering, Pabna Science & Technology University, Pabna, 6600, Bangladesh
| |
Collapse
|
7
|
Systems Biology and Bioinformatics approach to Identify blood based signatures molecules and drug targets of patient with COVID-19. INFORMATICS IN MEDICINE UNLOCKED 2022; 28:100840. [PMID: 34981034 PMCID: PMC8716147 DOI: 10.1016/j.imu.2021.100840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection results in the development of a highly contagious respiratory ailment known as new coronavirus disease (COVID-19). Despite the fact that the prevalence of COVID-19 continues to rise, it is still unclear how people become infected with SARS-CoV-2 and how patients with COVID-19 become so unwell. Detecting biomarkers for COVID-19 using peripheral blood mononuclear cells (PBMCs) may aid in drug development and treatment. This research aimed to find blood cell transcripts that represent levels of gene expression associated with COVID-19 progression. Through the development of a bioinformatics pipeline, two RNA-Seq transcriptomic datasets and one microarray dataset were studied and discovered 102 significant differentially expressed genes (DEGs) that were shared by three datasets derived from PBMCs. To identify the roles of these DEGs, we discovered disease-gene association networks and signaling pathways, as well as we performed gene ontology (GO) studies and identified hub protein. Identified significant gene ontology and molecular pathways improved our understanding of the pathophysiology of COVID-19, and our identified blood-based hub proteins TPX2, DLGAP5, NCAPG, CCNB1, KIF11, HJURP, AURKB, BUB1B, TTK, and TOP2A could be used for the development of therapeutic intervention. In COVID-19 subjects, we discovered effective putative connections between pathological processes in the transcripts blood cells, suggesting that blood cells could be used to diagnose and monitor the disease’s initiation and progression as well as developing drug therapeutics.
Collapse
|