1
|
Walker WJ, Underwood KL, Garrett PI, Lorbacher KB, Linch SM, Rynes TP, Sloop C, Mruk K. Effects of age on the response to spinal cord injury: optimizing the larval zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.18.541337. [PMID: 37292959 PMCID: PMC10245662 DOI: 10.1101/2023.05.18.541337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zebrafish are an increasingly popular model to study regeneration after spinal cord injury (SCI). The transparency of larval zebrafish makes them ideal to study cellular processes in real time. Standardized approaches, including age at the time of injury, are not readily available making comparisons of the results with other models challenging. In this study, we systematically examined the response to spinal cord transection of larval zebrafish at three different larval ages (3-, 5-, or 7-days post fertilization (dpf)) to determine whether the developmental complexity of the larvae affects the overall response to SCI. We then used imaging and behavioral analysis to evaluate whether differences existed based on the age of injury. Injury led to increased expression of cytokines associated with the immune response; however, we found that the timing of specific inflammatory markers changed with the age of the injury. We also observed changes in glial and axonal bridging with age. Young larvae (3 dpf) were better able to regenerate axons independent of the glial bridge, unlike older larvae (7 dpf), consistent with results seen in adult zebrafish. Finally, locomotor experiments demonstrated that some swimming behavior occurs independent of glial bridge formation, further highlighting the need for standardization of this model and functional recovery assays. Overall, we found differences based on the age of transection in larval zebrafish, underlining the importance of considering age when designing experiments aimed at understanding regeneration.
Collapse
|
2
|
Bonnechère B. Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles. Biomimetics (Basel) 2024; 9:723. [PMID: 39727727 DOI: 10.3390/biomimetics9120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Rehabilitation science has evolved significantly with the integration of technology-supported interventions, offering objective assessments, personalized programs, and real-time feedback for patients. Despite these advances, challenges remain in fully addressing the complexities of human recovery through the rehabilitation process. Over the last few years, there has been a growing interest in the application of biomimetics to inspire technological innovation. This review explores the application of biomimetic principles in rehabilitation technologies, focusing on the use of animal models to help the design of assistive devices such as robotic exoskeletons, prosthetics, and wearable sensors. Animal locomotion studies have, for example, inspired energy-efficient exoskeletons that mimic natural gait, while insights from neural plasticity research in species like zebrafish and axolotls are advancing regenerative medicine and rehabilitation techniques. Sensory systems in animals, such as the lateral line in fish, have also led to the development of wearable sensors that provide real-time feedback for motor learning. By integrating biomimetic approaches, rehabilitation technologies can better adapt to patient needs, ultimately improving functional outcomes. As the field advances, challenges related to translating animal research to human applications, ethical considerations, and technical barriers must be addressed to unlock the full potential of biomimetic rehabilitation.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Department of PXL-Healthcare, PXL University of Applied Sciences and Arts, 3500 Hasselt, Belgium
| |
Collapse
|
4
|
Kolb J, Tsata V, John N, Kim K, Möckel C, Rosso G, Kurbel V, Parmar A, Sharma G, Karandasheva K, Abuhattum S, Lyraki O, Beck T, Müller P, Schlüßler R, Frischknecht R, Wehner A, Krombholz N, Steigenberger B, Beis D, Takeoka A, Blümcke I, Möllmert S, Singh K, Guck J, Kobow K, Wehner D. Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nat Commun 2023; 14:6814. [PMID: 37884489 PMCID: PMC10603094 DOI: 10.1038/s41467-023-42339-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.
Collapse
Affiliation(s)
- Julia Kolb
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Vasiliki Tsata
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | - Nora John
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Veronika Kurbel
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Asha Parmar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gargi Sharma
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kristina Karandasheva
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Shada Abuhattum
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Olga Lyraki
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Timon Beck
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Anja Wehner
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Nicole Krombholz
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Dimitris Beis
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Aya Takeoka
- VIB-Neuroelectronics Research Flanders, 3001, Leuven, Belgium
- Department of Neuroscience and Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Kanwarpal Singh
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany.
| |
Collapse
|