1
|
Pagiazitis JG, Delestrée N, Sowoidnich L, Sivakumar N, Simon CM, Chatzisotiriou A, Albani M, Mentis GZ. Catecholaminergic dysfunction drives postural and locomotor deficits in a mouse model of spinal muscular atrophy. Cell Rep 2025; 44:115147. [PMID: 39752251 PMCID: PMC11832083 DOI: 10.1016/j.celrep.2024.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined. Here, we investigated the role of catecholaminergic neuromodulation in a mouse model of spinal muscular atrophy (SMA). SMA is characterized by severe motor dysfunction and postural deficits. We identify progressive loss of catecholaminergic synapses from spinal neurons that occur via non-cell autonomous mechanisms. Importantly, the selective restoration of survival motor neuron (SMN) in either catecholaminergic or serotonergic neurons is sufficient to correct impairments in locomotion. However, only combined SMN restoration in both catecholaminergic and serotonergic neurons or pharmacological treatment with l-dopa improve the severe postural deficits. These findings uncover the synaptic and cellular mechanisms responsible for the postural and motor symptoms in SMA and identify catecholaminergic neuromodulation as a potential therapeutic target.
Collapse
Affiliation(s)
- John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Leonie Sowoidnich
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Athanasios Chatzisotiriou
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Maria Albani
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Simon CM, Delestree N, Montes J, Gerstner F, Carranza E, Sowoidnich L, Buettner JM, Pagiazitis JG, Prat-Ortega G, Ensel S, Donadio S, Garcia JL, Kratimenos P, Chung WK, Sumner CJ, Weimer LH, Pirondini E, Capogrosso M, Pellizzoni L, De Vivo DC, Mentis GZ. Dysfunction of proprioceptive sensory synapses is a pathogenic event and therapeutic target in mice and humans with spinal muscular atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308132. [PMID: 38883729 PMCID: PMC11177917 DOI: 10.1101/2024.06.03.24308132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by a varying degree of severity that correlates with the reduction of SMN protein levels. Motor neuron degeneration and skeletal muscle atrophy are hallmarks of SMA, but it is unknown whether other mechanisms contribute to the spectrum of clinical phenotypes. Here, through a combination of physiological and morphological studies in mouse models and SMA patients, we identify dysfunction and loss of proprioceptive sensory synapses as key signatures of SMA pathology. We demonstrate that SMA patients exhibit impaired proprioception, and their proprioceptive sensory synapses are dysfunctional as measured by the neurophysiological test of the Hoffmann reflex (H-reflex). We further show that loss of excitatory afferent synapses and altered potassium channel expression in SMA motor neurons are conserved pathogenic events found in both severely affected patients and mouse models. Lastly, we report that improved motor function and fatigability in ambulatory SMA patients and mouse models treated with SMN-inducing drugs correlate with increased function of sensory-motor circuits that can be accurately captured by the H-reflex assay. Thus, sensory synaptic dysfunction is a clinically relevant event in SMA, and the H-reflex is a suitable assay to monitor disease progression and treatment efficacy of motor circuit pathology.
Collapse
Affiliation(s)
- CM Simon
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - N Delestree
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - J Montes
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Rehabilitation and Regenerative Medicine, Columbia University, NY, USA
| | - F Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - E Carranza
- Depts. Physical Medicine & Rehabilitation & Bioengineering, University of Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
| | - L Sowoidnich
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - JM Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - JG Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - G Prat-Ortega
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - S Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - S Donadio
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - JL Garcia
- Dept. of Neurology, Columbia University, NY, USA
| | - P Kratimenos
- Center for Neuroscience Research, Children’s National Res. Institute, Washington, DC, USA
- Dept. of Pediatrics, G Washington Univ. Sch. of Medicine, Washington, DC, USA
| | - WK Chung
- Dept. of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - CJ Sumner
- Depts. of Neurology, Neuroscience and Genetic Medicine, Johns Hopkins University School of Medicine, MD, USA
| | - LH Weimer
- Dept. of Neurology, Columbia University, NY, USA
| | - E Pirondini
- Depts. Physical Medicine & Rehabilitation & Bioengineering, University of Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
| | - M Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - L Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Dept. of Pathology and Cell Biology, Columbia University, NY, USA
| | - DC De Vivo
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - GZ Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Dept. of Pathology and Cell Biology, Columbia University, NY, USA
| |
Collapse
|
3
|
Kong L, Hassinan CW, Gerstner F, Buettner JM, Petigrow JB, Valdivia DO, Chan-Cortés MH, Mistri A, Cao A, McGaugh SA, Denton M, Brown S, Ross J, Schwab MH, Simon CM, Sumner CJ. Boosting neuregulin 1 type-III expression hastens SMA motor axon maturation. Acta Neuropathol Commun 2023; 11:53. [PMID: 36997967 PMCID: PMC10061791 DOI: 10.1186/s40478-023-01551-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
Intercellular communication between axons and Schwann cells is critical for attaining the complex morphological steps necessary for axon maturation. In the early onset motor neuron disease spinal muscular atrophy (SMA), many motor axons are not ensheathed by Schwann cells nor grow sufficiently in radial diameter to become myelinated. These developmentally arrested motor axons are dysfunctional and vulnerable to rapid degeneration, limiting efficacy of current SMA therapeutics. We hypothesized that accelerating SMA motor axon maturation would improve their function and reduce disease features. A principle regulator of peripheral axon development is neuregulin 1 type III (NRG1-III). Expressed on axon surfaces, it interacts with Schwann cell receptors to mediate axon ensheathment and myelination. We examined NRG1 mRNA and protein expression levels in human and mouse SMA tissues and observed reduced expression in SMA spinal cord and in ventral, but not dorsal root axons. To determine the impact of neuronal NRG1-III overexpression on SMA motor axon development, we bred NRG1-III overexpressing mice to SMA∆7 mice. Neonatally, elevated NRG1-III expression increased SMA ventral root size as well as axon segregation, diameter, and myelination resulting in improved motor axon conduction velocities. NRG1-III was not able to prevent distal axonal degeneration nor improve axon electrophysiology, motor behavior, or survival of older mice. Together these findings demonstrate that early SMA motor axon developmental impairments can be ameliorated by a molecular strategy independent of SMN replacement providing hope for future SMA combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Lingling Kong
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Cera W Hassinan
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jeffrey B Petigrow
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - David O Valdivia
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Michelle H Chan-Cortés
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Amy Mistri
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Annie Cao
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Scott Alan McGaugh
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Madeline Denton
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Stephen Brown
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Joshua Ross
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Markus H Schwab
- Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Charlotte J Sumner
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Buettner JM, Sowoidnich L, Gerstner F, Blanco-Redondo B, Hallermann S, Simon CM. p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models. Front Cell Neurosci 2022; 16:1038276. [DOI: 10.3389/fncel.2022.1038276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets c-fos, perp and fas in vulnerable motor neurons of SMA mice. Fluorescence in situ hybridization (FISH) of SMA motor neurons revealed c-fos RNA as a promising candidate. Accordingly, we identified p53-dependent nuclear upregulation of c-Fos protein in degenerating motor neurons from the severe SMNΔ7 and intermediate Smn2B/– SMA mouse models. Although motor neuron-specific c-fos genetic deletion in SMA mice did not improve motor neuron survival or motor behavior, p53-dependent c-Fos upregulation marks vulnerable motor neurons in different mouse models. Thus, nuclear c-Fos accumulation may serve as a readout for therapeutic approaches targeting neuronal death in SMA and possibly other p53-dependent neurodegenerative diseases.
Collapse
|