Zhang X, Wu Y, Han K, Fang Z, Cho E, Hu Y, Huangfu X, Zhao J. 3-Dimensional Bioprinting of a Tendon Stem Cell-Derived Exosomes Loaded Scaffold to Bridge the Unrepairable Massive Rotator Cuff Tear.
Am J Sports Med 2024;
52:2358-2371. [PMID:
38904220 DOI:
10.1177/03635465241255918]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND
Unrepairable massive rotator cuff tears (UMRCTs) are challenging to surgeons owing to the severely retracted rotator cuff musculotendinous tissues and extreme defects in the rotator cuff tendinous tissues.
PURPOSE
To fabricate a tendon stem cell-derived exosomes loaded scaffold (TSC-Exos-S) and investigate its effects on cellular bioactivity in vitro and repair in a rabbit UMRCT model in vivo.
STUDY DESIGN
Controlled laboratory study.
METHODS
TSC-Exos-S was fabricated by loading TSC-Exos and type 1 collagen (COL-I) into a 3-dimensional bioprinted and polycaprolactone (PCL)-based scaffold. The proliferation, migration, and tenogenic differentiation activities of rabbit bone marrow stem cells (BMSCs) were evaluated in vitro by culturing them in saline, PCL-based scaffold (S), COL-I loaded scaffold (COL-I-S), and TSC-Exos-S. In vivo studies were conducted on a rabbit UMRCT model, where bridging was repaired with S, COL-I-S, TSC-Exos-S, and autologous fascia lata (FL). Histological and biomechanical analyses were performed at 8 and 16 weeks postoperatively.
RESULTS
TSC-Exos-S exhibited reliable mechanical strength and subcutaneous degradation, which did not occur before tissue regeneration. TSC-Exos-S significantly promoted the proliferation, migration, and tenogenic differentiation of rabbit BMSCs in vitro. In vivo studies showed that UMRCT repaired with TSC-Exos-S exhibited significant signs of tendinous tissue regeneration at the bridging site with regard to specific collagen staining. Moreover, no significant differences were observed in the histological and biomechanical properties compared with those repaired with autologous FL.
CONCLUSION
TSC-Exos-S achieved tendinous tissue regeneration in UMRCT by providing mechanical support and promoting the trend toward tenogenic differentiation.
CLINICAL RELEVANCE
The present study proposes a potential strategy for repairing UMRCT with severely retracted musculotendinous tissues and large tendinous tissue defects.
Collapse