1
|
Vernon HJ, Manoli I. Milestones in treatments for inborn errors of metabolism: Reflections on Where chemistry and medicine meet. Am J Med Genet A 2021; 185:3350-3358. [PMID: 34165242 DOI: 10.1002/ajmg.a.62385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.
Collapse
Affiliation(s)
- Hilary J Vernon
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
2
|
Bharadwaj A, Wahi N, Saxena A. Occurrence of Inborn Errors of Metabolism in Newborns, Diagnosis and Prophylaxis. Endocr Metab Immune Disord Drug Targets 2020; 21:592-616. [PMID: 33357204 DOI: 10.2174/1871530321666201223110918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Inborn errors of metabolism (IEM) are a heterogeneous group of rare genetic disorders that are generally transmitted as autosomal or X-linked recessive disorders. These defects arise due to mutations associated with specific gene(s), especially the ones associated with key metabolic enzymes. These enzymes or their product(s) are involved in various metabolic pathways, leading to the accumulation of intermediary metabolite(s), reflecting their toxic effects upon mutations. The diagnosis of these metabolic disorders is based on the biochemical analysis of the clinical manifestations produced and their molecular mechanism. Therefore, it is imperative to devise diagnostic tests with high sensitivity and specificity for early detection of IEM. Recent advances in biochemical and polymerase chain reaction-based genetic analysis along with pedigree and prenatal diagnosis can be life-saving in nature. The latest development in exome sequencing for rapid diagnosis and enzyme replacement therapy would facilitate the successful treatment of these metabolic disorders in the future. However, the longterm clinical implications of these genetic manipulations is still a matter of debate among intellectuals and requires further research.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Nitin Wahi
- Department of Bioinformatics, Pathfinder Research and Training Foundation, Greater Noida - 201308, Uttar Pradesh, India
| | - Aditya Saxena
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
McGuire PJ. Chemical individuality in T cells: A Garrodian view of immunometabolism. Immunol Rev 2020; 295:82-100. [PMID: 32236968 DOI: 10.1111/imr.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
Metabolically quiescent T cells circulate throughout the body in search of antigen. Following engagement of their cognate receptors, T cells undergo metabolic reprogramming to support their activation, differentiation, and ultimately function. In the spirit of Sir Archibald Garrod, this metabolic reprogramming actually imparts a chemical individuality which confers advantage, while in others confers vulnerability, depending upon the milieu. Studying T cell immunometabolism in the context of inborn errors of metabolism allows one to define essential pathways of intermediary metabolism as well metabolic vulnerabilities and plasticity. Inborn errors of metabolism, a class of diseases first named by Garrod, have a long history of being informative for common physiologic and pathologic processes. This endeavor may be accomplished through the study of patients, animal models, and in vitro models of inborn errors of metabolism. In this review, the basics of intermediary metabolism and core metabolic pathways will be discussed, along with their relationship to T cell immunometabolism. Due to their pleiotropic nature, the reader will be specifically directed toward various inborn errors of metabolism which may be helpful for answering important questions about the role of metabolism in T cells.
Collapse
Affiliation(s)
- Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
NMR-based newborn urine screening for optimized detection of inherited errors of metabolism. Sci Rep 2019; 9:13067. [PMID: 31506554 PMCID: PMC6736868 DOI: 10.1038/s41598-019-49685-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are rare diseases produced by the accumulation of abnormal amounts of metabolites, toxic to the newborn. When not detected on time, they can lead to irreversible physiological and psychological sequels or even demise. Metabolomics has emerged as an efficient and powerful tool for IEM detection in newborns, children, and adults with late onset. In here, we screened urine samples from a large set of neonates (470 individuals) from a homogeneous population (Basque Country), for the identification of congenital metabolic diseases using NMR spectroscopy. Absolute quantification allowed to derive a probability function for up to 66 metabolites that adequately describes their normal concentration ranges in newborns from the Basque Country. The absence of another 84 metabolites, considered abnormal, was routinely verified in the healthy newborn population and confirmed for all but 2 samples, of which one showed toxic concentrations of metabolites associated to ketosis and the other one a high trimethylamine concentration that strongly suggested an episode of trimethylaminuria. Thus, a non-invasive and readily accessible urine sample contains enough information to assess the potential existence of a substantial number (>70) of IEMs in newborns, using a single, automated and standardized 1H- NMR-based analysis.
Collapse
|
5
|
Wang H, Wang X, Li Y, Dai W, Jiang D, Zhang X, Cui Y. Screening for inherited metabolic diseases using gas chromatography-tandem mass spectrometry (GC-MS/MS) in Sichuan, China. Biomed Chromatogr 2016; 31. [PMID: 27598852 DOI: 10.1002/bmc.3847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Hong Wang
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education; West China Second University Hospital, Sichuan University; Sichuan China
| | - Xia Wang
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
| | - Yingying Li
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
| | - Wei Dai
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
| | - Dongmei Jiang
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
| | - Xiaodong Zhang
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
| | - Yali Cui
- Department of Laboratory Medicine; West China Second University Hospital, Sichuan University; Sichuan China
| |
Collapse
|
6
|
MacLeod EL, Hall KD, McGuire PJ. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders. J Inherit Metab Dis 2016; 39:17-24. [PMID: 26260782 PMCID: PMC4713290 DOI: 10.1007/s10545-015-9882-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/29/2022]
Abstract
Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.
Collapse
Affiliation(s)
- Erin L MacLeod
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, 4A62, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Yoon HR. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry. Ann Pediatr Endocrinol Metab 2015; 20:119-24. [PMID: 26512346 PMCID: PMC4623338 DOI: 10.6065/apem.2015.20.3.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/16/2022] Open
Abstract
The main purpose of newborn screening is to diagnose genetic, metabolic, and other inherited disorders, at their earliest to start treatment before the clinical manifestations become evident. Understanding and tracing the biochemical data obtained from tandem mass spectrometry is vital for early diagnosis of metabolic diseases associated with such disorders. Accordingly, it is important to focus on the entire diagnostic process, including differential and confirmatory diagnostic options, and the major factors that influence the results of biochemical analysis. Compared to regular biochemical testing, this is a complex process carried out by a medical physician specialist. It is comprised of an integrated program requiring multidisciplinary approach such as, pediatric specialist, expert scientist, clinical laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful tool to improve screening of newborns for diverse metabolic diseases. It is likely to be used to analyze other treatable disorders or significantly improve existing newborn tests to allow broad scale and precise testing. This new era of various screening programs, new treatments, and the availability of detection technology will prove to be beneficial for the future generations.
Collapse
Affiliation(s)
- Hye-Ran Yoon
- Biomedical & Pharmaceutical Analysis Lab, College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
8
|
Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:528-37. [PMID: 25448014 DOI: 10.1016/j.bbapap.2014.10.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Divisions of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan.
| |
Collapse
|
9
|
Affiliation(s)
| | - Stephen C Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
10
|
Parini R, Furlan F, Brambilla A, Codazzi D, Vedovati S, Corbetta C, Fedeli T, Merinero B, Pérez B, Ugarte M. Severe Neonatal Metabolic Decompensation in Methylmalonic Acidemia Caused by CblD Defect. JIMD Rep 2013; 11:133-7. [PMID: 23686626 DOI: 10.1007/8904_2013_232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
CblD disorder is an autosomal recessive, rare, heterogeneous disease with variable clinical presentations, depending on the nature and location of the MMADHC gene mutations. Mutations in MMADHC lead to three distinct phenotypes: cblD-MMA, cblD-HC, and cblD-MMA/HC. To date, 18 cblD patients have been reported. Six of them were affected by cblD-MMA, but only three had a known clinical history. One of these patients presented with a metabolic decompensation at 11 months; the second one, born prematurely, was diagnosed with cblD after being treated for intracranial hemorrhage, respiratory distress syndrome, necrotizing enterocolitis, and convulsions at birth; the third one was diagnosed at 5 years of age.Here we present a case of a cblD-MMA patient who had an acute neonatal onset with severe hyperammonemia requiring hemodiafiltration. To the best of our knowledge, this is the first cblD-MMA patient who presented acutely in the newborn period. He has developed well upon treatment with B12, carnitine, and hypoproteic diet. At present time, at the age of 7, he shows normal growth and cognitive development. Thus, it is likely that the aggressive treatment of this child with hemodiafiltration might have prevented him from long-term neurological sequelae. Overall, this case shows that even severe, neonatal-onset patients may display a vitamin B12-responsive MMA. Furthermore, it suggests that an early treatment with vitamins might be beneficial for patients presenting with neonatal-onset hyperammonemia regardless of the suspected disease and before receiving the biochemical diagnosis.
Collapse
Affiliation(s)
- R Parini
- Rare Metabolic Diseases Unit and Neonatal Intensive Care Unit, Fondazione MBBM, A.O. San Gerardo, Via Pergolesi 33, 20900, Monza, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|