1
|
Stem Cell Mobilization Is Lifesaving in a Large Animal Preclinical Model of Acute Liver Failure. Ann Surg 2019; 268:620-631. [PMID: 30102635 DOI: 10.1097/sla.0000000000002958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Acute liver failure (ALF) affects 2000 Americans each year with no treatment options other than liver transplantation. We showed previously that mobilization of endogenous stem cells is protective against ALF in rodents. The objective of this study was to assess whether stem cell mobilizing drugs are lifesaving in a large animal preclinical model of ALF, to assess readiness for a clinical trial. METHODS Male Yorkshire pigs (14-18 kg) were divided into 2 groups, control (n = 6) and treatment (n = 6). All pigs received an intravenous bolus of the hepatotoxin D-galactosamine (0.5 g/kg) via central line and were followed up until death or day 28. Treated animals received simultaneous intramuscular injection of plerixafor (1 mg/kg) and G-CSF (2 μg/kg) at baseline, 24 and 48 hours after toxin infusion to mobilize endogenous stem cells, as previously described. Control animals received saline. RESULTS All control animals (6/6) succumbed to liver failure within 91 hours, confirmed by clinical, biochemical, and histopathological evidence of ALF. In the treatment group (5/6) animals survived indefinitely despite comparable biochemical changes during the first 48 hours (P = 0.003). White blood cell count increased by a mean of 4× in the treated group at the peak of mobilization (P = 0.0004). CONCLUSIONS Stem cell mobilizing drugs were lifesaving in a preclinical large animal model of ALF. Since no therapeutic options other than liver transplantation are currently available for critically ill patients with ALF, a multicenter clinical trial is warranted.
Collapse
|
2
|
Bahaji Azami NL, Sun M. Zeaxanthin Dipalmitate in the Treatment of Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1475163. [PMID: 31531108 PMCID: PMC6721266 DOI: 10.1155/2019/1475163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Goji berry, Lycium barbarum, has been widely used in traditional Chinese medicine (TCM), but its properties have not been studied until recently. The fruit is a major source of zeaxanthin dipalmitate (ZD), a xanthophyll carotenoid shown to benefit the liver. Liver disease is one of the most prevalent diseases in the world. Some conditions, such as chronic hepatitis B virus, liver cirrhosis, and hepatocellular carcinoma, remain incurable. Managing them can constitute an economic burden for patients and healthcare systems. Hence, development of more effective pharmacological drugs is warranted. Studies have shown the hepatoprotective, antifibrotic, antioxidant, anti-inflammatory, antiapoptotic, antitumor, and chemopreventive properties of ZD. These findings suggest that ZD-based drugs could hold promise for many liver disorders. In this paper, we reviewed the current literature regarding the therapeutic effects of ZD in the treatment of liver disease.
Collapse
Affiliation(s)
- Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Yasen A, Tuxun T, Apaer S, Li W, Maimaitinijiati Y, Wang H, Aisan M, Aji T, Shao Y, Hao W. Fetal liver stem cell transplantation for liver diseases. Regen Med 2019; 14:703-714. [PMID: 31393226 DOI: 10.2217/rme-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cell transplantation exhibited a promising lifesaving therapy for various end-stage liver diseases and could serve as a salvaging bridge until curative methods can be performed. In past decades, mature hepatocytes, liver progenitor cells, mesenchymal stem cells and induced pluripotent stem cells have been practiced in above settings. However, long-term survival rates and continuous proliferation ability of these cells in vivo are unsatisfactory, whereas, fetal liver stem cells (FLSCs), given their unique superiority, may be the best candidate for stem cell transplantation technique. Recent studies have revealed that FLSCs could be used as an attractive genetic therapy or regenerative treatments for inherited metabolic or other hepatic disorders. In this study, we reviewed current status and advancements of FLSCs-based treatment.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Shadike Apaer
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wending Li
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yusufukadier Maimaitinijiati
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Hui Wang
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Meiheriayi Aisan
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yingmei Shao
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wen Hao
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| |
Collapse
|
4
|
Liu Y, Xiong Y, Xing F, Gao H, Wang X, He L, Ren C, Liu L, So KF, Xiao J. Precise Regulation of miR-210 Is Critical for the Cellular Homeostasis Maintenance and Transplantation Efficacy Enhancement of Mesenchymal Stem Cells in Acute Liver Failure Therapy. Cell Transplant 2016; 26:805-820. [PMID: 27983913 DOI: 10.3727/096368916x694274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stem cell transplantation is a promising clinical strategy to cure acute liver failure. However, a low cell survival ratio after transplantation significantly impairs its therapeutic efficacy. This is partly due to insufficient resistance of transplanted stem cells to severe oxidative and inflammatory stress at the injury sites. In the current study, we demonstrated that a small molecule zeaxanthin dipalmitate (ZD) could enhance the defensive abilities against adverse stresses of human adipose-derived mesenchymal stem cells (hADMSCs) in vitro and increase their therapeutic outcomes of acute liver failure after transplantation in vivo. Treatment with ZD dramatically improved cell survival and suppressed apoptosis, inflammation, and reactive oxygen species (ROS) production of hADMSCs through the PKC/Raf-1/MAPK/NF-κB pathway to maintain a reasonably high expression level of microRNA-210 (miR-210). The regulation loop between miR-210 and cellular/mitochondrial ROS production was found to be linked by the ROS inhibitor iron-sulfur cluster assembly proteins (ISCU). Pretreatment with ZD and stable knockdown of miR-210 significantly improved and impaired the stem cell transplantation efficacy through the alteration of hepatic cell expansion and injury amelioration, respectively. Vehicle treatment with ZD did not pose any adverse effect on cell homeostasis or healthy animal. In conclusion, elevating endogenous antioxidant level of hADMSCs with ZD significantly enhances their hepatic tissue-repairing capabilities. Maintenance of a physiological level of miR-210 is critical for hADMSC homeostasis.
Collapse
|
5
|
Zeng W, Xiao J, Zheng G, Xing F, Tipoe GL, Wang X, He C, Chen ZY, Liu Y. Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci Rep 2015; 5:11100. [PMID: 26057841 PMCID: PMC4460871 DOI: 10.1038/srep11100] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
One of the major problems influencing the therapeutic efficacy of stem cell therapy is the poor cell survival following transplantation. This is partly attributed to insufficient resistance of transplanted stem cells to oxidative and inflammatory stresses at the injured sites. In the current study, we demonstrated the pivotal role of antioxidant levels in human umbilical cord mesenchymal stem cells (hUCMSCs) dynamic in vitro anti-stress abilities against lipopolysaccharide (LPS)/H2O2 intoxication and in vivo therapeutic efficacy in a murine acute liver failure model induced by D-galactosamine/LPS (Gal/LPS) by either reducing the antioxidant levels with diethyl maleate (DEM) or increasing antioxidant levels with edaravone. Both the anti- and pro-oxidant treatments dramatically influenced the survival, apoptosis, and reactive oxygen species (ROS) production of hUCMSCs through the MAPK-PKC-Nrf2 pathway in vitro. When compared with untreated and DEM-treated cells, edaravone-treated hUCMSCs rescued NOD/SCID mice from Gal/LPS-induced death, significantly improved hepatic functions and promoted host liver regeneration. These effects were probably from increased stem cell homing, promoted proliferation, decreased apoptosis and enhanced secretion of hepatocyte growth factor (HGF) under hepatic stress environment. In conclusion, elevating levels of antioxidants in hUCMSCs with edaravone can significantly influence their hepatic tissue repair capacity.
Collapse
Affiliation(s)
- Wen Zeng
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia Xiao
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Gang Zheng
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - George L Tipoe
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Xiaogang Wang
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Chengyi He
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhi-Ying Chen
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingxia Liu
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, Zhang S, Xu L, Chen Y. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep 2015; 12:2089-97. [PMID: 25901902 DOI: 10.3892/mmr.2015.3660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
In recent years, bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to exert extensive therapeutic effects on acute liver injury; however, the underlying mechanisms of these effects have remained to be elucidated. The present study focused on the potential anti-apoptotic and pro-regenerative effects of BMSCs in D-galactosamine (D-Gal) and lipopolysaccharide (LPS)-induced acute liver injury in rats. An experimental rat acute liver injury model was established by intraperitoneal injection of D-Gal (400 mg/kg) and LPS (80 μg/kg). BMSCs and an identical volume of saline were administered via the caudal vein 2 h after the D-Gal and LPS challenge. Subsequently, the serum samples were collected to detect the levels of alanine aminotransferase and aspartate aminotransferase. Hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated nick-end labeling assay and immunohistochemical staining were performed to determine apoptosis, regeneration and histological changes of liver sections. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the protein and mRNA expression levels of fibrinogen-like-protein 1 (FGL1), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), STAT3 and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) in liver tissue samples. The results indicated that intravenous transplantation of BMSCs significantly decreased the levels of alanine aminotransferase and aspartate aminotransferase, and reduced hepatocellular necrosis and inflammatory cell infiltration. Additionally, a terminal deoxynucleotidyl transferase-mediated nick-end labeling assay and immunohistochemical staining revealed that BMSC treatment reduced hepatocyte apoptosis and enhanced liver regeneration. Furthermore, Bcl-2 expression was increased, whilst the protein expression of Bax was reduced. The expression of FGL1 and p-STAT3 were elevated concurrently with the improvement of liver function. These results demonstrated that BMSCs may provide a promising potential agent for the prevention of acute liver injury via inhibition of hepatocyte apoptosis and acceleration of liver regeneration. The mechanism may be, a least in part, a consequence of the upregulation of FGL1 expression and the induction of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Zhuolin Zou
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yijing Cai
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yi Chen
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Si Chen
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liyuan Liu
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhonghai Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Sainan Zhang
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lanman Xu
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yongping Chen
- Department of Infectious Disease, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
7
|
Clinical Outcome of Autologous Hematopoietic Stem Cell Infusion via Hepatic Artery or Portal Vein in Patients with End-stage Liver Diseases. ACTA ACUST UNITED AC 2014; 29:15-22. [DOI: 10.1016/s1001-9294(14)60018-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Loukopoulos I, Sfiniadakis I, Pillai A, Konstantoulakis M, Androulakis G, Bonatsos V, Zografos G, Papalois A. Mycophenolate Mofetil and Sirolimus in Hepatocyte Transplantation in an Experimental Model of Toxic Acute Liver Failure. J INVEST SURG 2014; 27:205-13. [DOI: 10.3109/08941939.2013.879967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Kosieradzki M, Lisik W, Rowiński W, Małkowski P. Progress in abdominal organ transplantation. Med Sci Monit 2012; 17:RA282-91. [PMID: 22129915 PMCID: PMC3628136 DOI: 10.12659/msm.882119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The excellent results of vascularized organ transplantation have resulted in an increasing number of end-stage organ failure patients seeking such treatment. The results of organ transplantation depend on a number of factors – the quality of the donor (and an organ), living vs. deceased donation, magnitude of ischemic injury (and its prevention), and recipient-dependent factors. Ischemia/reperfusion injury in organ transplantation is a multifactorial process, which may lead to delayed graft function. In addition, surgical and preservation techniques, type of immunosuppressive regimens, complications after transplantation and post-transplant management may also have a significant impact on short- and long-term results of transplantation. In this paper we describe advances in transplantation in recent years, with particular emphasis on kidney, liver, intestines, whole pancreas and pancreatic islets.
Collapse
Affiliation(s)
- Maciej Kosieradzki
- Department of General Surgery and Transplantology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|