1
|
Ripa A, Palacios-Gonzalez MJ, Díaz-Caballero JA, Espinosa A, Zalba FJ, García-Zapata JL, Fernádez-García JL. Molecular Method Based on Hydrolysis Probe Assays to Identify the Sex Chromosomes of Iberian Desman (Galemys pyrenaicus) Using Non-Invasive Sampling. Integr Zool 2024. [PMID: 39648044 DOI: 10.1111/1749-4877.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
Desmans belong to the subfamily Desmaninae, which are members of the family Talpidae. Desmans and moles show limited sexual dimorphism, making unclear sex discrimination by phenotypic assessment. The Iberian desman (Galemys pyrenaicus) is an endangered species with a severe population decline. Knowledge of sex and sex ratio is essential for conservation and management. Based on these arguments and although previous conventional PCR studies amplifying DBX/DBY genes were relatively successful in sexing the desman, high-resolution sex-specific PCR has been requested. All these reasons encouraged us to develop new species-specific RT-qPCR assays by TaqMan probes to determine the sex in desman, especially with genetic material from non-invasive samples. Accordingly, efficiency, limit of detection (LOD), specificity, and DNA analysis from faeces were verified. The target genes DBX and DBY were amplified with gDNA from both sexes, with Y-chromosome consistently absent in the female. Despite the modest efficiency, regression analysis (R2 > 0.999) indicated a linear range of the DBX and DBY assays extending from 20 to 0.2 ng/µL DNA. LOD analyses estimated that twice as much gDNA was needed in males as in females for DBX detection. Paradoxically, the Y-chromosome required three times as much gDNA as the X-chromosome using a male sample. Therefore, an unexpected dosage imbalance in the genome in favour of the X chromosome was discussed in light of an apparent multicopy nature of the DBX gene and with a sexing success rate of 49.9% of the non-invasive samples, supporting Fisher's principle for the mammalian XX/XY sex system, as expected.
Collapse
Affiliation(s)
- Adriana Ripa
- Genetic and Animal Breeding, Faculty of Veterinary, Universidad de Extremadura, Cáceres, Spain
| | | | - José A Díaz-Caballero
- Dirección General de Sostenibilidad, Junta de Extremadura, Mérida, Spain
- Área del Medio Natural, Sociedad de Gestión Pública de Extremadura (GPEX), Junta de Extremadura, Mérida, Spain
| | - Antonio Espinosa
- Genetic and Animal Breeding, Faculty of Veterinary, Universidad de Extremadura, Cáceres, Spain
| | - Francisco Javier Zalba
- Área del Medio Natural, Sociedad de Gestión Pública de Extremadura (GPEX), Junta de Extremadura, Mérida, Spain
| | | | | |
Collapse
|
2
|
Bogdanov A, Sokolova M, Bakloushinskaya I. Specificity of Key Sex Determination Genes in a Mammal with Ovotestes: The European Mole Talpa europaea. Animals (Basel) 2024; 14:2180. [PMID: 39123706 PMCID: PMC11311037 DOI: 10.3390/ani14152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Here, for the first time, the structure of genes involved in sex determination in mammals (full Sry and partial Rspo1, Eif2s3x, and Eif2s3y) was analyzed for the European mole Talpa europaea with ovotestes in females. We confirmed male-specificity for Eif2s3y and Sry. Five exons were revealed for Rspo1 and the deep similarity with the structure of this gene in T. occidentalis was proved. The most intriguing result was obtained for the Sry gene, which, in placental mammals, initiates male development. We described two exons for this canonically single-exon gene: the first (initial) exon is only 15 bp while the second exon includes 450 bp. The exons are divided by an extended intron of about 1894 bp, including the fragment of the LINE retroposon. Moreover, in chromatogram fragments, which correspond to intron and DNA areas, flanking both exons, we revealed double peaks, similar to heterozygous nucleotide sites of autosomal genes. This may indicate the existence of two or more copies of the Sry gene. Proof of copies requires an additional in-depth study. We hypothesize that unusual structure and possible supernumerary copies of Sry may be involved in ovotestes formation.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
| | - Maria Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
- Biological Department, Lomonosov State University, 119234 Moscow, Russia
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
| |
Collapse
|
3
|
Schindler M, Osterwalder M, Harabula I, Wittler L, Tzika AC, Dechmann DKN, Vingron M, Visel A, Haas SA, Real FM. Induction of kidney-related gene programs through co-option of SALL1 in mole ovotestes. Development 2023; 150:dev201562. [PMID: 37519269 PMCID: PMC10499028 DOI: 10.1242/dev.201562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Changes in gene expression represent an important source of phenotypic innovation. Yet how such changes emerge and impact the evolution of traits remains elusive. Here, we explore the molecular mechanisms associated with the development of masculinizing ovotestes in female moles. By performing integrative analyses of epigenetic and transcriptional data in mole and mouse, we identified the co-option of SALL1 expression in mole ovotestes formation. Chromosome conformation capture analyses highlight a striking conservation of the 3D organization at the SALL1 locus, but an evolutionary divergence of enhancer activity. Interspecies reporter assays support the capability of mole-specific enhancers to activate transcription in urogenital tissues. Through overexpression experiments in transgenic mice, we further demonstrate the capability of SALL1 to induce kidney-related gene programs, which are a signature of mole ovotestes. Our results highlight the co-option of gene expression, through changes in enhancer activity, as a plausible mechanism for the evolution of traits.
Collapse
Affiliation(s)
- Magdalena Schindler
- Gene Regulation & Evolution, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, Bern 3010, Switzerland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Izabela Harabula
- Epigenetic Regulation and Chromatin Architecture, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin 10115, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Athanasia C. Tzika
- Department of Genetics & Evolution, University of Geneva, Geneva 1205, Switzerland
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute for Animal Behavior, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Stefan A. Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Francisca M. Real
- Gene Regulation & Evolution, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| |
Collapse
|
4
|
Jiménez R, Burgos M, Barrionuevo FJ. The Biology and Evolution of Fierce Females (Moles and Hyenas). Annu Rev Anim Biosci 2023; 11:141-162. [PMID: 36130099 DOI: 10.1146/annurev-animal-050622-043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (a) their specific study methods; (b) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (c) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Miguel Burgos
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Francisco J Barrionuevo
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| |
Collapse
|
5
|
Real FM, Lao-Pérez M, Burgos M, Mundlos S, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:231-244. [PMID: 35535962 DOI: 10.1002/jez.b.23142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-β signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.
Collapse
Affiliation(s)
- Francisca M Real
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
6
|
Saunders PA, Veyrunes F. Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities. Genes (Basel) 2021; 12:1770. [PMID: 34828376 PMCID: PMC8617835 DOI: 10.3390/genes12111770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Therian mammals have among the oldest and most conserved sex-determining systems known to date. Any deviation from the standard XX/XY mammalian sex chromosome constitution usually leads to sterility or poor fertility, due to the high differentiation and specialization of the X and Y chromosomes. Nevertheless, a handful of rodents harbor so-called unusual sex-determining systems. While in some species, fertile XY females are found, some others have completely lost their Y chromosome. These atypical species have fascinated researchers for over 60 years, and constitute unique natural models for the study of fundamental processes involved in sex determination in mammals and vertebrates. In this article, we review current knowledge of these species, discuss their similarities and differences, and attempt to expose how the study of their exceptional sex-determining systems can further our understanding of general processes involved in sex chromosome and sex determination evolution.
Collapse
Affiliation(s)
- Paul A. Saunders
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS 7000, Australia
| | - Frédéric Veyrunes
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| |
Collapse
|
7
|
Fromme L, Yogui DR, Alves MH, Desbiez AL, Langeheine M, Quagliatto A, Siebert U, Brehm R. Morphology of the genital organs of male and female giant anteaters ( Myrmecophaga tridactyla). PeerJ 2021; 9:e11945. [PMID: 34447632 PMCID: PMC8364315 DOI: 10.7717/peerj.11945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The giant anteater belongs to the supraorder Xenarthra which occupies a systematically isolated position among placental mammals. The species is categorized as Vulnerable by the International Union for Conservation of Nature, and understanding its reproductive characteristics is critical for future conservation efforts. METHODS Gross and microscopic anatomy of the genital organs of 23 male and 21 female adult and young roadkill giant anteaters in Brazil were studied. RESULTS Male giant anteaters presented a short conical penis, intraabdominal testes, and prostate, vesicular and bulbourethral glands. A tubular remnant of the partially fused Müllerian ducts extended from the seminal colliculus through the prostate gland, continued cranially in the genital fold, bifurcated, and attached with one elongation each to the left and right epididymal corpus. The structure presented a total length of up to 10 cm and contained a yellowish liquid in its lumen. Histologically, the caudal section of this structure resembled the female vagina, the middle portion corresponded to the uterus, and the extensions showed characteristics of uterine tubes. In adult female giant anteaters, ovoid ovaries with occasional seminiferous cord-like structures were observed. The animals possessed a simple uterus, which was directly continuous with the vaginal canal. The caudal portion of the vagina had two lumina, separated by a longitudinal septum and opening into two apertures into the vaginal vestibule, cranial to the urethral opening. In the urethral and the lateral vestibular wall, glandular structures with characteristics of male prostate and bulbourethral glands, respectively, were found. The vestibule opened through a vertical vulvar cleft to the exterior. A pair of well-differentiated Wolffian ducts with a central lumen originated ventrally at the vaginal opening into the vestibule and passed in a cranial direction through the ventral vaginal and uterine wall. Each duct extended highly coiled along the ipsilateral uterine tube until the lateral pole of the ovaries where it merged with the rete ovarii. DISCUSSION The reproductive morphology of giant anteaters reveals characteristics shared with other Xenarthrans: intraabdominal testes, a simple uterus, and a double caudal vagina. The persistence of well-differentiated genital ducts of the opposite sex in both males and females, however, singles them out among other species. These structures are the results of an aberration during fetal sexual differentiation and possess secretory functions. The possibility of a pathological degeneration of these organs should be considered in reproductive medicine of the species. CONCLUSION Knowledge of the unique reproductive characteristics of the giant anteater is essential for future reproductive management of the species. Additionally, further research on the peculiarities of the persisting genital duct structures might help to understand sexual differentiation in placental mammals in general.
Collapse
Affiliation(s)
- Lilja Fromme
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Débora R. Yogui
- Project Anteaters and Highways, Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
- Nashville Zoo, Nashville, TN, United States of America
| | - Mario Henrique Alves
- Project Anteaters and Highways, Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
- Fundación Zoológica de Cali, Valle del Cauca, Colombia
| | - Arnaud L.J. Desbiez
- Project Anteaters and Highways, Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
- Royal Zoological Society of Scotland (RZSS), Edinburgh, United Kingdom
- Instituto de Pesquisas Ecológicas (IPÊ), São Paulo, Brazil
| | - Marion Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - André Quagliatto
- Laboratório de Ensino e Pesquisa em Animais Silvestres (LAPAS), Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Jiménez R, Burgos M, Barrionuevo FJ. Sex Maintenance in Mammals. Genes (Basel) 2021; 12:genes12070999. [PMID: 34209938 PMCID: PMC8303465 DOI: 10.3390/genes12070999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022] Open
Abstract
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual hormones that induce the subsequent differentiation of the male reproductive tract. On the other hand, the lack of masculinizing hormones in XX embryos permits the formation of the female reproductive tract. It was long assumed that once the gonad is differentiated, this developmental decision is irreversible. However, several findings in the last decade have shown that this is not the case and that a continuous sex maintenance is needed. Deletion of Foxl2 in the adult ovary lead to ovary-to-testis transdifferentiation and deletion of either Dmrt1 or Sox9/Sox8 in the adult testis induces the opposite process. In both cases, mutant gonads were genetically reprogrammed, showing that both the male program in ovaries and the female program in testes must be actively repressed throughout the individual's life. In addition to these transcription factors, other genes and molecular pathways have also been shown to be involved in this antagonism. The aim of this review is to provide an overview of the genetic basis of sex maintenance once the gonad is already differentiated.
Collapse
|
9
|
M Real F, Haas SA, Franchini P, Xiong P, Simakov O, Kuhl H, Schöpflin R, Heller D, Moeinzadeh MH, Heinrich V, Krannich T, Bressin A, Hartmann MF, Wudy SA, Dechmann DKN, Hurtado A, Barrionuevo FJ, Schindler M, Harabula I, Osterwalder M, Hiller M, Wittler L, Visel A, Timmermann B, Meyer A, Vingron M, Jiménez R, Mundlos S, Lupiáñez DG. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science 2020; 370:208-214. [PMID: 33033216 PMCID: PMC8243244 DOI: 10.1126/science.aaz2582] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
Linking genomic variation to phenotypical traits remains a major challenge in evolutionary genetics. In this study, we use phylogenomic strategies to investigate a distinctive trait among mammals: the development of masculinizing ovotestes in female moles. By combining a chromosome-scale genome assembly of the Iberian mole, Talpa occidentalis, with transcriptomic, epigenetic, and chromatin interaction datasets, we identify rearrangements altering the regulatory landscape of genes with distinct gonadal expression patterns. These include a tandem triplication involving CYP17A1, a gene controlling androgen synthesis, and an intrachromosomal inversion involving the pro-testicular growth factor gene FGF9, which is heterochronically expressed in mole ovotestes. Transgenic mice with a knock-in mole CYP17A1 enhancer or overexpressing FGF9 showed phenotypes recapitulating mole sexual features. Our results highlight how integrative genomic approaches can reveal the phenotypic impact of noncoding sequence changes.
Collapse
Affiliation(s)
- Francisca M Real
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paolo Franchini
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Peiwen Xiong
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1090 Vienna, Austria
| | - Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Robert Schöpflin
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Heller
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M-Hossein Moeinzadeh
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Heinrich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Krannich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annkatrin Bressin
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Paediatric Endocrinology, Division of Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Paediatric Endocrinology, Division of Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Dina K N Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alicia Hurtado
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Magdalena Schindler
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Izabela Harabula
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Bernd Timmermann
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Darío G Lupiáñez
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
10
|
Sinclair AW, Glickman S, Catania K, Shinohara A, Baskin L, Cunha GR. Comparative Morphology of the Penis and Clitoris in Four Species of Moles (Talpidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:275-294. [PMID: 28251823 PMCID: PMC5448796 DOI: 10.1002/jez.b.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 11/09/2022]
Abstract
The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy-tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles. Using histology, three-dimensional reconstruction, and morphometric analysis, sexual dimorphism was examined with regard to a nine feature masculine trait score that included perineal appendage length (prepuce), anogenital distance, and presence/absence of bone. The presence/absence of ovotestes was discordant in all four mole species for sex differentiation features. For many sex differentiation features, discordance with ovotestes was observed in at least one mole species. The degree of concordance with ovotestes was highest for hairy-tailed moles and lowest for broad-footed moles. In relationship to phylogenetic clade, sex differentiation features also did not correlate with the similarity/divergence of the features and presence/absence of ovotestes. Hairy-tailed and Japanese shrew moles reside in separated clades, but they exhibit a high degree of congruence. Broad-footed and hairy-tailed moles reside within the same clade but had one of the lowest correlations in features and presence/absence of ovotestes. Thus, phylogenetic affinity and the presence/absence of ovotestes are poor predictors for most sex differentiation features within mole external genitalia.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Stephen Glickman
- Departments of Psychology and Integrative Biology, University of California, Berkeley, CA 94720
| | - Kenneth Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Akio Shinohara
- Frontier Science Research Center, University of Miyazaki, Kihara 5200, Japan
| | - Lawrence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Gerald R. Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| |
Collapse
|
11
|
Parma P, Veyrunes F, Pailhoux E. Sex Reversal in Non-Human Placental Mammals. Sex Dev 2016; 10:326-344. [PMID: 27529721 DOI: 10.1159/000448361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/31/2023] Open
Abstract
Gonads are very peculiar organs given their bipotential competence. Indeed, early differentiating genital ridges evolve into either of 2 very distinct organs: the testis or the ovary. Accumulating evidence now demonstrates that both genetic pathways must repress the other in order for the organs to differentiate properly, meaning that if this repression is disrupted or attenuated, the other pathway may completely or partially be expressed, leading to disorders of sex development. Among these disorders are the cases of XY male-to-female and XX female-to-male sex reversals as well as true hermaphrodites, in which there is a discrepancy between the chromosomal and gonadal sex. Here, we review known cases of XY and XX sex reversals described in mammals, focusing mostly on domestic animals where sex reversal pathologies occur and on wild species in which deviations from the usual XX/XY system have been documented.
Collapse
Affiliation(s)
- Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | | | | |
Collapse
|
12
|
Barrionuevo F, Burgos M, Jiménez R. Origin and function of embryonic Sertoli cells. Biomol Concepts 2015; 2:537-47. [PMID: 25962053 DOI: 10.1515/bmc.2011.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/16/2011] [Indexed: 11/15/2022] Open
Abstract
In the adult testis, Sertoli cells (SCs) are the epithelial supporting cells of the seminiferous tubules that provide germ cells (GCs) with the required nutrients and structural and regulatory support to complete spermatogenesis. SCs also form the blood-testis barrier, phagocytose apoptotic spermatocytes and cell debris derived from spermiogenesis, and produce and secrete numerous paracrine and endocrine signals involved in different regulatory processes. In addition to their essential functions in the adult testis, SCs play a pivotal role during testis development. They are the first cells to differentiate in the embryonic XY gonadal primordium and are involved in the regulation of testis-specific differentiation processes, such as prevention of GC entry into meiosis, Leydig and peritubular myoid cell differentiation, and regression of the Müllerian duct, the anlagen of the uterus, oviducts, and the upper part of the vagina. Expression of the Y-linked gene SRY in pre-SCs initiates a genetic cascade that leads to SC differentiation and subsequently to testis development. Since the identification of the SRY gene, many Sertoli-specific transcription factors and signals underlying the molecular mechanisms of early testis differentiation have been identified. Here, we review the state of the art of the molecular interactions that commit the supporting cell lineage of the gonadal primordium to differentiate as SCs and the subsequent Sertoli-specific signaling pathways involved in early testis differentiation.
Collapse
|
13
|
Rahmoun M, Perez J, Saunders PA, Boizet-Bonhoure B, Wilhelm D, Poulat F, Veyrunes F. Anatomical and Molecular Analyses of XY Ovaries from the African Pygmy MouseMus minutoides. Sex Dev 2014; 8:356-63. [DOI: 10.1159/000368664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
|
14
|
Dadhich RK, Barrionuevo FJ, Real FM, Lupiañez DG, Ortega E, Burgos M, Jiménez R. Identification of live germ-cell desquamation as a major mechanism of seasonal testis regression in mammals: a study in the Iberian mole (Talpa occidentalis). Biol Reprod 2013; 88:101. [PMID: 23515671 DOI: 10.1095/biolreprod.112.106708] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In males of seasonally breeding species, testes undergo a severe involution at the end of the breeding season, with a major volume decrease due to massive germ-cell depletion associated with photoperiod-dependent reduced levels of testosterone and gonadotropins. Although it has been repeatedly suggested that apoptosis is the principal effector of testicular regression in vertebrates, recent studies do not support this hypothesis in some mammals. The purpose of our work is to discover alternative mechanisms of testis regression in these species. In this paper, we have performed a morphological, hormonal, ultrastructural, molecular, and functional study of the mechanism of testicular regression and the role that cell junctions play in the cell-content dynamics of the testis of the Iberian mole, Talpa occidentalis, throughout the seasonal breeding cycle. Desquamation of live, nonapoptotic germ cells has been identified here as a new mechanism for seasonal testis involution in mammals, indicating that testis regression is regulated by modulating the expression and distribution of the cell-adhesion molecules in the seminiferous epithelium. During this process, which is mediated by low intratesticular testosterone levels, Sertoli cells lose their nursing and supporting function, as well as the impermeability of the blood-testis barrier. Our results contradict the current paradigm that apoptosis is the major testis regression effector in vertebrates, as it is clearly not true in all mammals. The new testis regression mechanism described here for the mole could then be generalized to other mammalian species. Available data from some previously studied mammals should be reevaluated.
Collapse
Affiliation(s)
- Rajesh K Dadhich
- Departamento de Genética, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Jiménez R, Barrionuevo FJ, Burgos M. Natural exceptions to normal gonad development in mammals. Sex Dev 2012; 7:147-62. [PMID: 22626995 DOI: 10.1159/000338768] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gonads are the only organs with 2 possible developmental pathways, testis or ovary. A consequence of this unique feature is that mutations in genes controlling gonad development give rise not only to gonadal malformation or dysfunction but also to frequent cases of sex reversal, including XY females, XX males and intersexes. Most of our current knowledge on mammalian sex determination, the genetic process by which the gonadal primordia are committed to differentiate as either testes or ovaries, has derived mainly from the study of sex-reversed mice obtained by direct genetic manipulation. However, there are also numerous cases of natural exceptions to normal gonad development which have been described in a variety of mammals, including both domestic and wild species. Here, we review the most relevant cases of: (1) natural, non-induced sex reversal and intersexuality described in laboratory rodents, including Sxr and B6-Y(DOM) mice; (2) sex reversal in domestic animals, including freemartinism in bovids and pigs, XX sex reversal in pigs, goats and dogs, XY sex reversal in the horse, and sex chromosome chimerism and sex reversal in the cat, and (3) sex reversal in wild mammals, including the generalised true hermaphroditism described in talpid moles, XY sex reversal in Akodon, Microtus and Dicrostonyx species, males lacking a Y chromosome and SRY in Ellobius lutescens, the X* chromosome of Myopus schisticolor, and sex chromosome mosaicism and X0 females in Microtus oregoni. These studies are necessary to elucidate particular aspects of mammalian gonad development in some instances and to understand how the genetic mechanisms controlling gonad development have evolved.
Collapse
Affiliation(s)
- R Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Laboratorio 127 CIBM, Centro de Investigación Biomédica, ES–18100 Armilla, Granada, Spain.
| | | | | |
Collapse
|
16
|
LUPIÁÑEZ DARÍOG, REAL FRANCISCAM, DADHICH RAJESHK, CARMONA FRANCISCOD, BURGOS MIGUEL, BARRIONUEVO FRANCISCOJ, JIMÉNEZ RAFAEL. Pattern and Density of Vascularization in Mammalian Testes, Ovaries, and Ovotestes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:170-81. [DOI: 10.1002/jez.b.22000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Dadhich RK, Barrionuevo FJ, Lupiañez DG, Real FM, Burgos M, Jiménez R. Expression of genes controlling testicular development in adult testis of the seasonally breeding iberian mole. Sex Dev 2011; 5:77-88. [PMID: 21412037 DOI: 10.1159/000323805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 01/21/2023] Open
Abstract
Most testicular features undergo major circannual variation in seasonal breeding species. Although the ultimate cause of these variations is known to be the photoperiod in most cases, very little is known about the genetic mechanisms by which these changes are modulated in the testis. Many genes involved in testis development are known to be expressed in the adult testis as well. Since these genes encode genetic regulatory factors, it is reasonable to suspect that they could play some role in the control of the adult testis function. Using immunological detection techniques and RT-Q-PCR, we have studied the spatio-temporal expression pattern of WT1, SF1, SOX9, AMH, and DMRT1 in 4 representative stages of the circannual cycle of the testes of Talpa occidentalis, a mole species with strict seasonal reproduction. AMH is not expressed at any stage of the cycle, showing that inactive adult testes are functionally different from pre-pubertal, juvenile ones. The continuous presence of primary spermatocytes may explain the permanent repression of AMH in the mole testis. WT1 and SF1 are down-regulated and SOX9 is up-regulated in regressed mole testes, suggesting that the modulation of the expression of these genes may be involved in the control of circannual gonad variation. Furthermore, SOX9 and DMRT1 show clear spermatogenic stage-dependent expression patterns. Both genes are expressed more intensely during the proliferative stages of spermatogonia, although SOX9 expression is limited to Sertoli cells, whereas DMRT1 is expressed in both Sertoli and spermatogonial cells. Available data suggest that intratesticular levels of testosterone could regulate circannual spermatogenic variations of seasonal breeders by modulating the expression of DMRT1 to control spermatogonial proliferation.
Collapse
Affiliation(s)
- R K Dadhich
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, Armilla, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Dadhich RK, Real FM, Zurita F, Barrionuevo FJ, Burgos M, Jiménez R. Role of apoptosis and cell proliferation in the testicular dynamics of seasonal breeding mammals: a study in the Iberian mole, Talpa occidentalis. Biol Reprod 2010; 83:83-91. [PMID: 20357272 DOI: 10.1095/biolreprod.109.080135] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Apoptosis and cell proliferation are two important cellular processes known to be involved in the normal functioning of the testis in nonseasonally breeding mammals, but there is some controversy concerning their roles in the gonads of males from seasonally breeding species. We have studied the processes of apoptosis and cell proliferation in the testes of males of the Iberian mole (Talpa occidentalis), a species showing a strict seasonal reproduction pattern. Both males and females are sexually active during the winter and completely inactive in the summer, with two transitional periods, in the autumn and the spring. Adult males from these four reproductive stages were captured, and their testes were immunohistochemically studied for the presence of apoptotic and proliferation molecular markers as well for other testicular and meiotic cell-specific markers. We found that apoptosis varies in a season-dependent manner in the testes of male moles, affecting mainly late zygotene and pachytene cells during the period of sexual inactivity, but it does not differentially affect the number of Sertoli cells. More interestingly, apoptosis is not responsible for the massive germ-cell depletion occurring during mole testis regression. In addition, a wave of spermatogonial cell proliferation appears to restore the number of spermatogonia lost during the period of testis inactivity. According to current knowledge, data from moles indicate that mammals do not form a homogeneous group regarding the mechanisms by which the cell-content dynamics are regulated in the testes of males from seasonally breeding species.
Collapse
Affiliation(s)
- Rajesh K Dadhich
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, Granada, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Carmona FD, Glösmann M, Ou J, Jiménez R, Collinson JM. Retinal development and function in a 'blind' mole. Proc Biol Sci 2009; 277:1513-22. [PMID: 20007180 DOI: 10.1098/rspb.2009.1744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animals adapted to dark ecotopes may experience selective pressure for retinal reduction. No previous studies have explicitly addressed the molecular basis of retinal development in any fossorial mammal. We studied retinal development and function in the Iberian mole Talpa occidentalis, which was presumed to be blind because of its permanently closed eyes. Prenatal retina development was relatively normal, with specification of all cell types and evidence of dorsoventral regionalization. Severe developmental defects occurred after birth, subsequent to lens abnormalities. 'Blind' Iberian moles had rods, cones and rod nuclear ultrastructure typical of diurnal mammals. DiI staining revealed only contralateral projections through the optic chiasm. Y-maze experiments demonstrated that moles retain a photoavoidance response. Over-representation of melanopsin-positive retinal ganglion cells that mediate photoperiodicity was observed. Hence, molecular pathways of eye development in Iberian moles retain the adaptive function of rod/cone primary vision and photoperiodicity, with no evidence that moles are likely to completely lose their eyes on an evolutionary time scale.
Collapse
Affiliation(s)
- F David Carmona
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
20
|
Carmona FD, Lupiáñez DG, Real FM, Burgos M, Zurita F, Jiménez R. SOX9 is not required for the cellular events of testicular organogenesis in XX mole ovotestes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:734-48. [DOI: 10.1002/jez.b.21291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Carmona FD, Jiménez R, Collinson JM. The molecular basis of defective lens development in the Iberian mole. BMC Biol 2008; 6:44. [PMID: 18939978 PMCID: PMC2587461 DOI: 10.1186/1741-7007-6-44] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/21/2008] [Indexed: 11/24/2022] Open
Abstract
Background Fossorial mammals face natural selection pressures that differ from those acting on surface dwelling animals, and these may lead to reduced visual system development. We have studied eye development in a species of true mole, the Iberian mole Talpa occidentalis, and present the molecular basis of abnormal lens development. This is the first embryological developmental study of the eyes of any fossorial mammal at the molecular level. Results Lens fibre differentiation is not completed in the Iberian mole. Although eye development starts normally (similar to other model species), defects are seen after closure of the lens vesicle. PAX6 is not down-regulated in developing lens fibre nuclei, as it is in other species, and there is ectopic expression of FOXE3, a putative downstream effector of PAX6, in some, but not all lens fibres. FOXE3-positive lens fibres continue to proliferate within the posterior compartment of the embryonic lens, but unlike in the mouse, no proliferation was detected anywhere in the postnatal mole lens. The undifferentiated status of the anterior epithelial cells was compromised, and most of them undergo apoptosis. Furthermore, β-crystallin and PROX1 expression patterns are abnormal and our data suggest that genes encoding β-crystallins are not directly regulated by PAX6, c-MAF and PROX1 in the Iberian mole, as they are in other model vertebrates. Conclusion In other model vertebrates, genetic pathways controlling lens development robustly compartmentalise the lens into a simple, undifferentiated, proliferative anterior epithelium, and quiescent, anuclear, terminally differentiated posterior lens fibres. These pathways are not as robust in the mole, and lead to loss of the anterior epithelial phenotype and only partial differentiation of the lens fibres, which continue to express 'epithelial' genes. Paradigms of genetic regulatory networks developed in other vertebrates appear not to hold true for the Iberian mole.
Collapse
Affiliation(s)
- F David Carmona
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | |
Collapse
|
22
|
Carmona FD, Motokawa M, Tokita M, Tsuchiya K, Jiménez R, Sánchez-Villagra MR. The evolution of female mole ovotestes evidences high plasticity of mammalian gonad development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:259-66. [DOI: 10.1002/jez.b.21209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
|
24
|
Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM. Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 2007; 119:135-42. [PMID: 18160793 DOI: 10.1159/000109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 06/11/2007] [Indexed: 11/19/2022] Open
Abstract
The facultative heterochromatic X chromosome in leptotene spermatocytes of the grasshopper Eyprepocnemis plorans showed marked hypoacetylation for lysine 9 in the H3 histone (H3-K9) with no sign of histone H2AX phosphorylation. Since H3-K9 hypoacetylation precedes the meiotic appearance of phosphorylated H2AX (gamma-H2AX), which marks the beginning of recombinational DNA double-strand breaks (DSBs), it seems that meiotic sex-chromosome inactivation (MSCI) in this grasshopper occurs prior to the beginning of recombination and hence synapsis (which in this species begins later than recombination). In addition, all constitutively heterochromatic chromosome regions harbouring a 180-bp tandem-repeat DNA and rDNA (B chromosomes and pericentromeric regions of A chromosomes) were H3-K9 hypoacetylated at early leptotene even though they will synapse at subsequent stages. This also suggests that meiotic silencing in this grasshopper might be independent of synapsis. The H3-K9 hypoacetylated state of facultative and constitutive heterochromatin persisted during subsequent meiotic stages and was even apparent in round spermatids. Finally, the fact that B chromosomes are differentially hypoacetylated in testis and embryo interphase cells suggests that they might be silenced early in development and remain this way for most (or all) life-cycle stages.
Collapse
Affiliation(s)
- J Cabrero
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
25
|
Cabrero J, Teruel M, Carmona FD, Camacho JPM. Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. Cytogenet Genome Res 2007; 116:311-5. [PMID: 17431330 DOI: 10.1159/000100416] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 12/22/2006] [Indexed: 11/19/2022] Open
Abstract
It is widely accepted that the H2AX histone in its phosphorylated form (gamma-H2AX) is related to the repair of DNA double-strand breaks (DSBs). In several organisms, gamma-H2AX presence has been demonstrated in meiotic processes such as recombination and sex chromosome inactivation during prophase I (from leptotene to pachytene). To test whether gamma-H2AX is present beyond pachytene, we have analysed the complete sequence of changes in H2AX phosphorylation during meiosis in grasshopper, a model organism for meiotic studies at the cytological level. We show the presence of phosphorylated H2AX during most of meiosis, with the exception only of diplotene and the end of each meiotic division. During the first meiotic division, gamma-H2AX is associated with i) recombination, as deduced from its presence in leptotene-zygotene over all chromosome length, ii) X chromosome inactivation, since at pachytene gamma-H2AX is present in the X chromosome only, and iii) chromosome segregation, as deduced from gamma-H2AX presence in centromere regions at first metaphase-anaphase. During second meiotic division, gamma-H2AX was very abundant at most chromosome lengths from metaphase to telophase, suggesting its possible association with the maintenance of chromosome condensation and segregation.
Collapse
Affiliation(s)
- J Cabrero
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
26
|
Mackay S, Smith RA. Effects of growth factors on testicular morphogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 260:113-73. [PMID: 17482905 DOI: 10.1016/s0074-7696(06)60003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the discovery of the sex-determining gene Sry in 1990, research effort has focused on the events downstream of its expression. A range of different experimental approaches including gene expression, knocking-out and knocking-in genes of interest, and cell and tissue culture techniques have been applied, highlighting the importance of growth factors at all stages of testicular morphogenesis. Migration of primordial germ cells and the mesonephric precursors of peritubular myoid cells and endothelial cells to the gonad is under growth factor control. Proliferation of both germ cells and somatic cells within the gonadal primordium is also controlled by cytokines as is the interaction of Sertoli cells (with each other and with the extracellular matrix) to form testicular cords. Several growth factors/growth factor families (e.g., platelet-derived growth factor, fibroblast growth factor family, TGFbeta family, and neurotrophins) have emerged as key players, exerting an influence at different time points and steps in organogenesis. Although most evidence has emerged in the mouse, comparative studies are important in elucidating the variety, potential, and evolution of control mechanisms.
Collapse
Affiliation(s)
- Sarah Mackay
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK, G12 8QQ
| | | |
Collapse
|
27
|
Sanchez-Villagra MR, Horovitz I, Motokawa M. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics 2006; 22:59-88. [DOI: 10.1111/j.1096-0031.2006.00087.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|