1
|
Sat-Muñoz D, Balderas-Peña LMA, Gómez-Sánchez E, Martínez-Herrera BE, Trujillo-Hernández B, Quiroga-Morales LA, Salazar-Páramo M, Dávalos-Rodríguez IP, Nuño-Guzmán CM, Velázquez-Flores MC, Ochoa-Plascencia MR, Muciño-Hernández MI, Isiordia-Espinoza MA, Mireles-Ramírez MA, Hernández-Salazar E. Onco-Ontogeny of Squamous Cell Cancer of the First Pharyngeal Arch Derivatives. Int J Mol Sci 2024; 25:9979. [PMID: 39337467 PMCID: PMC11432412 DOI: 10.3390/ijms25189979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck squamous cell carcinoma (H&NSCC) is an anatomic, biological, and genetic complex disease. It involves more than 1000 genes implied in its oncogenesis; for this review, we limit our search and description to the genes implied in the onco-ontogeny of the derivates from the first pharyngeal arch during embryo development. They can be grouped as transcription factors and signaling molecules (that act as growth factors that bind to receptors). Finally, we propose the term embryo-oncogenesis to refer to the activation, reactivation, and use of the genes involved in the embryo's development during the oncogenesis or malignant tumor invasion and metastasis events as part of an onco-ontogenic inverse process.
Collapse
Affiliation(s)
- Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Cirugía Oncológica, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma-Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Departamento de Nutrición y Dietética, Hospital General de Zona #1, Instituto Mexicano del Seguro Social, OOAD Aguascalientes, Boulevard José María Chavez #1202, Fracc, Lindavista, Aguascalientes 20270, Mexico
| | | | - Luis-Aarón Quiroga-Morales
- Unidad Académica de Ciencias de la Salud, Clínica de Rehabilitación y Alto Rendimiento ESPORTIVA, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Academia de Inmunología, Guadalajara 44340, Mexico
| | - Ingrid-Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. Guadalajara 44340, Mexico
| | - Carlos M Nuño-Guzmán
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento Clínico de Cirugía General, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Martha-Cecilia Velázquez-Flores
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Anestesiología, División de Cirugía, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Miguel-Ricardo Ochoa-Plascencia
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - María-Ivette Muciño-Hernández
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario-Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Hernández-Salazar
- Departamento de Admisión Médica Continua, UMAE Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
2
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
3
|
Zhu K, Spaink HP, Durston AJ. Patterning of the Vertebrate Head in Time and Space by BMP Signaling. J Dev Biol 2023; 11:31. [PMID: 37489332 PMCID: PMC10366882 DOI: 10.3390/jdb11030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Antony J Durston
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| |
Collapse
|
4
|
Abstract
Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.
Collapse
Affiliation(s)
- Katharine A. Hubert
- Program in Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
6
|
Bruce AEE, Winklbauer R. Brachyury in the gastrula of basal vertebrates. Mech Dev 2020; 163:103625. [PMID: 32526279 DOI: 10.1016/j.mod.2020.103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The Brachyury gene encodes a transcription factor that is conserved across all animals. In non-chordate metazoans, brachyury is primarily expressed in ectoderm regions that are added to the endodermal gut during development, and often form a ring around the site of endoderm internalization in the gastrula, the blastopore. In chordates, this brachyury ring is conserved, but the gene has taken on a new role in the formation of the mesoderm. In this phylum, a novel type of mesoderm that develops into notochord and somites has been added to the ancestral lateral plate mesoderm. Brachyury contributes to a shift in cell fate from neural ectoderm to posterior notochord and somites during a major lineage segregation event that in Xenopus and in the zebrafish takes place in the early gastrula. In the absence of this brachyury function, impaired formation of posterior mesoderm indirectly affects the gastrulation movements of peak involution and convergent extension. These movements are confined to specific regions and stages, leaving open the question why brachyury expression in an extensive, coherent ring, before, during and after gastrulation, is conserved in the two species whose gastrulation modes differ considerably, and also in many other metazoan gastrulae of diverse structure.
Collapse
Affiliation(s)
- Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
7
|
Zhang C, Featherstone M. A zebrafish hox gene acts before gastrulation to specify the hemangioblast. Genesis 2020; 58:e23363. [PMID: 32302038 DOI: 10.1002/dvg.23363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Hox genes encode transcription factors that have been implicated in embryonic, adult and disease processes. The earliest developmental program known to be directed by Hox genes is the timing of ingression of presumptive axial mesoderm during gastrulation. We previously used morpholino (MO)-based knockdown to implicate the zebrafish hoxd4a gene in the specification of the hemangioblast, an event occurring at pre-gastrulation stages, well before the earliest known Hox gene function. The precise time at which hoxd4a function is required for this specification is not defined. We therefore fused the hoxd4a coding region to the human estrogen receptor (hERT2 ). Following co-injection of anti-hoxd4a MO with mRNA encoding the Hoxd4a-ERT2 fusion protein, hemangioblast specification was fully rescued when embryos were exposed to the estrogen analog 4-hydroxy-tamoxifen (4-OHT) at 4 hr post-fertilization (hpf), but only poorly at 6 hpf and not at all at 8 hpf, thereby defining a pre-gastrulation role for Hoxd4a, the earliest developmental function of a vertebrate Hox gene so far described. Both DNA binding and interaction with cofactor Pbx were further shown to be required for rescue of the morphant phenotype. Confirmation of the morphant phenotype was sought via the generation of hoxd4a null mutants using CRISPR/Cas9 technology. Null mutants of hoxd4a up to the third generation (F3 ) failed to recapitulate the morphant phenotype, and were largely refractory to the effects of injected anti-hoxd4a MO suggesting the action of genetic compensation.
Collapse
Affiliation(s)
- Changqing Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mark Featherstone
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Durston AJ. A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper 'Positional Information and the Spatial Pattern of Differentiation'. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis. Int J Mol Sci 2020; 21:E2552. [PMID: 32272563 PMCID: PMC7177403 DOI: 10.3390/ijms21072552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
Durston AJ. Some Questions and Answers About the Role of Hox Temporal Collinearity in Vertebrate Axial Patterning. Front Cell Dev Biol 2019; 7:257. [PMID: 31850338 PMCID: PMC6895010 DOI: 10.3389/fcell.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.
Collapse
|
10
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
11
|
Matsunami M, Suzuki M, Haramoto Y, Fukui A, Inoue T, Yamaguchi K, Uchiyama I, Mori K, Tashiro K, Ito Y, Takeuchi T, Suzuki KIT, Agata K, Shigenobu S, Hayashi T. A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Res 2019; 26:217-229. [PMID: 31006799 PMCID: PMC6589553 DOI: 10.1093/dnares/dsz003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Urodele newts have unique biological properties, notably including prominent regeneration ability. The Iberian ribbed newt, Pleurodeles waltl, is a promising model amphibian distinguished by ease of breeding and efficient transgenic and genome editing methods. However, limited genetic information is available for P. waltl. We conducted an intensive transcriptome analysis of P. waltl using RNA-sequencing to build and annotate gene models. We generated 1.2 billion Illumina reads from a wide variety of samples across 12 different tissues/organs, unfertilized egg, and embryos at eight different developmental stages. These reads were assembled into 1,395,387 contigs, from which 202,788 non-redundant ORF models were constructed. The set is expected to cover a large fraction of P. waltl protein-coding genes, as confirmed by BUSCO analysis, where 98% of universal single-copy orthologs were identified. Ortholog analyses revealed the gene repertoire evolution of urodele amphibians. Using the gene set as a reference, gene network analysis identified regeneration-, developmental-stage-, and tissue-specific co-expressed gene modules. Our transcriptome resource is expected to enhance future research employing this emerging model animal for regeneration research as well as for investigations in other areas including developmental biology, stem cell biology, and cancer research. These data are available via our portal website, iNewt (http://www.nibb.ac.jp/imori/main/).
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Advanced Genomics and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa, Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ikuo Uchiyama
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuki Mori
- Computational Bio Big-Data Open Innovation Lab. (CBBD-OIL), Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-Ku, Tokyo, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Takeuchi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ken-ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Center for the Development of New Model Organisms, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-Ku, Tokyo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshinori Hayashi
- Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
12
|
Kondo M, Matsuo M, Igarashi K, Haramoto Y, Yamamoto T, Yasuoka Y, Taira M. De novo transcription of multiple Hox cluster genes takes place simultaneously in early Xenopus tropicalis embryos. Biol Open 2019; 8:bio.038422. [PMID: 30651235 PMCID: PMC6451350 DOI: 10.1242/bio.038422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
hox genes are found as clusters in the genome in most bilaterians. The order of genes in the cluster is supposed to be correlated with the site of expression along the anterior-posterior body axis and the timing of expression during development, and these correlations are called spatial and temporal collinearity, respectively. Here we studied the expression dynamics of all hox genes of the diploid species Xenopus tropicalis in four Hox clusters (A–D) by analyzing high-temporal-resolution RNA-seq databases and the results showed that temporal collinearity is not supported, which is consistent with our previous data from allotetraploid Xenopuslaevis. Because the temporal collinearity hypothesis implicitly assumes the collinear order of gene activation, not mRNA accumulation, we determined for the first time the timing of when new transcripts of hox genes are produced, by detecting pre-spliced RNA in whole embryos with reverse transcription and quantitative PCR (RT-qPCR) for all hoxa genes as well as several selected hoxb, hoxc and hoxd genes. Our analyses showed that, coinciding with the RNA-seq results, hoxa genes started to be transcribed in a non-sequential order, and found that multiple genes start expression almost simultaneously or more posterior genes could be expressed earlier than anterior ones. This tendency was also found in hoxb and hoxc genes. These results suggest that temporal collinearity of hox genes is not held during early development of Xenopus. Summary: qPCR analysis for de novo transcription of hox genes suggest that temporal collinearity is not held for all hox genes during early development of Xenopus tropicalis.
Collapse
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science and Center for Marine Biology, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Megumi Matsuo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kento Igarashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Abstract
Hox temporal collinearity (TC) is a mysterious feature of embryogenesis. This article is opportune because of a recent challenge to TC’s existence This challenge is examined and the evidence that TC does exist is presented. Its function is discussed. Temporal collinearity is thought to be important because it lays the basis for Hox spatial collinearity and the vertebrate A-P axial pattern. The time-space translation mechanism whereby this occurs is examined.
Collapse
Affiliation(s)
- A J Durston
- a Institute of Biology , University of Leiden, Sylvius Laboratory , Leiden , Netherlands
| |
Collapse
|
14
|
Durston AJ. Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning. Front Cell Dev Biol 2018; 6:102. [PMID: 30234110 PMCID: PMC6131192 DOI: 10.3389/fcell.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022] Open
Abstract
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox–Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo’s main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via “decision points,” separating different domains on the axis.
Collapse
Affiliation(s)
- Antony J Durston
- Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
15
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
16
|
|
17
|
Pasiliao CC, Hopyan S. Cell ingression: Relevance to limb development and for adaptive evolution. Genesis 2017; 56. [PMID: 29280270 DOI: 10.1002/dvg.23086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Cell ingression is an out-of-plane type of cell intercalation that is essential for the formation of multiple embryonic structures including the limbs. In particular, cell ingression underlies epithelial-to-mesenchymal transition of lateral plate cells to initiate limb bud growth, delamination of neural crest cells to generate peripheral nerve sheaths, and emigration of myoblasts from somites to assemble muscles. Individual cells that ingress undergo apical constriction to generate bottle shaped cells, diminish adhesion to their epithelial cell neighbors, and generate protrusive blebs that likely facilitate their ingression into a subepithelial tissue layer. How signaling pathways regulate the progression of delamination is important for understanding numerous developmental events. In this review, we focus on cellular and molecular mechanisms that drive cell ingression and draw comparisons between different morphogenetic contexts in various model organisms. We speculate that cell behaviors that facilitated tissue invagination among diploblasts subsequently drove individual cell ingression and epithelial-to-mesenchymal transition. Future insights that link signalling pathways to biophysical mechanisms will likely advance our comprehension of this phenomenon.
Collapse
Affiliation(s)
- Clarissa C Pasiliao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada.,Division of Orthopaedic Surgery, Hospital for Sick Children and University of, Toronto, M5G 1X8, Canada
| |
Collapse
|
18
|
Abstract
Collinear regulation of Hox genes in space and time has been an outstanding question ever since the initial work of Ed Lewis in 1978. Here we discuss recent advances in our understanding of this phenomenon in relation to novel concepts associated with large-scale regulation and chromatin structure during the development of both axial and limb patterns. We further discuss how this sequential transcriptional activation marks embryonic stem cell-like axial progenitors in mammals and, consequently, how a temporal genetic system is further translated into spatial coordinates via the fate of these progenitors. In this context, we argue the benefit and necessity of implementing this unique mechanism as well as the difficulty in evolving an alternative strategy to deliver this critical positional information.
Collapse
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
19
|
Kondo M, Yamamoto T, Takahashi S, Taira M. Comprehensive analyses ofhoxgene expression inXenopus laevisembryos and adult tissues. Dev Growth Differ 2017; 59:526-539. [DOI: 10.1111/dgd.12382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station; Graduate School of Science and Center for Marine Biology; The University of Tokyo; 1024 Koajiro Misaki Miura Kanagawa 238-0225 Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shuji Takahashi
- Institute for Amphibian Biology; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Masanori Taira
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
20
|
Zhu K, Spaink HP, Durston AJ. Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis. PLoS One 2017; 12:e0175287. [PMID: 28399140 PMCID: PMC5388487 DOI: 10.1371/journal.pone.0175287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Investigating regulation and function of the Hox genes, key regulators of positional identity in the embryo, opened a new vista in developmental biology. One of their most striking features is collinearity: the temporal and spatial orders of expression of these clustered genes each match their 3’ to 5’ order on the chromosome. Despite recent progress, the mechanisms underlying collinearity are not understood. Here we show that ectopic expression of 4 different single Hox genes predictably induces and represses expression of others, leading to development of different predictable specific sections of the body axis. We use ectopic expression in wild-type and noggin—dorsalised (Hox-free) Xenopus embryos, to show that two Hox-Hox interactions are important. Posterior induction (induction of posterior Hox genes by anterior ones: PI), drives Hox temporal collinearity (Hox timer), which itself drives anteroposterior (A-P) patterning. Posterior prevalence (repression of anterior Hox genes by posterior ones: PP) is important in translating temporal to spatial collinearity. We thus demonstrate for the first time that two collinear Hox interactions are important for vertebrate axial patterning. These findings considerably extend and clarify earlier work suggesting the existence and importance of PP and PI, and provide a major new insight into genesis of the body axis.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Antony J. Durston
- Institute of Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
21
|
Taniguchi Y, Kurth T, Weiche S, Reichelt S, Tazaki A, Perike S, Kappert V, Epperlein HH. The posterior neural plate in axolotl gives rise to neural tube or turns anteriorly to form somites of the tail and posterior trunk. Dev Biol 2017; 422:155-170. [DOI: 10.1016/j.ydbio.2016.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
|
22
|
Kulakova MA, Bakalenko NI, Novikova EL. Early mesodermal expression of Hox genes in the polychaete Alitta virens (Annelida, Lophotrochozoa). Dev Genes Evol 2017; 227:69-74. [PMID: 27695997 DOI: 10.1007/s00427-016-0563-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023]
Abstract
Hox genes are the key regulators of axial regionalization of bilaterian animals. However, their main function is fulfilled differently in the development of animals from different evolutionary branches. Early patterning of the developing embryos by Hox gene expression in the representatives of protostomes (arthropods, mollusks) starts in the ectodermal cells. On the contrary, the instructive role of the mesoderm in the axial patterning was demonstrated for vertebrates. This makes it difficult to understand if during the axial regionalization of ancestral bilaterians Hox genes first expressed in the developing mesoderm or the ectoderm. To resolve this question, it is necessary to expand the number of models for investigation of the early axial patterning. Here, we show that three Hox genes of the polychaete Alitta virens (formerly Nereis virens, Annelida, Lophotrochozoa)-Hox2, Hox4, and Lox5-are expressed in the mesodermal anlagen of the three future larval chaetigerous segments in spatially colinear manner before the initiation of Hox expression in the larval ectoderm. This is the first evidence of sequential Hox gene expression in the mesoderm of protostomes to date.
Collapse
Affiliation(s)
- Milana A Kulakova
- Department of Embryology, Laboratory of Experimental Embryology, Saint Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Nadezhda I Bakalenko
- Department of Embryology, Laboratory of Experimental Embryology, Saint Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Elena L Novikova
- Department of Embryology, Laboratory of Experimental Embryology, Saint Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia.
| |
Collapse
|
23
|
Beaupeux M, François P. Positional information from oscillatory phase shifts : insights from in silico evolution. Phys Biol 2016; 13:036009. [PMID: 27346171 DOI: 10.1088/1478-3975/13/3/036009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Complex cellular decisions are based on temporal dynamics of pathways, including genetic oscillators. In development, recent works on vertebrae formation have suggested that relative phase of genetic oscillators encode positional information, including differentiation front defining vertebrae positions. Precise mechanisms for this are still unknown. Here, we use computational evolution to find gene network topologies that can compute the phase difference between oscillators and convert it into a decoder morphogen concentration. Two types of networks are discovered, based on symmetry properties of the decoder gene. So called asymmetric networks are studied, and two submodules are identified converting phase information into an amplitude variable. Those networks naturally display a 'shock' for a well defined phase difference, that can be used to define a wavefront of differentiation. We show how implementation of these ideas reproduce experimental features of vertebrate segmentation.
Collapse
Affiliation(s)
- M Beaupeux
- Ernest Rutherford Physics Building, McGill University, H3A2T8 Montreal QC, Canada
| | | |
Collapse
|
24
|
Carron C, Shi DL. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:150-68. [PMID: 26544673 DOI: 10.1002/wdev.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.,School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
25
|
Gouveia A, Marcelino HM, Gonçalves L, Palmeirim I, Andrade RP. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo. Cell Cycle 2015; 14:135-45. [PMID: 25602523 DOI: 10.4161/15384101.2014.972868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.
Collapse
Affiliation(s)
- Analuce Gouveia
- a Life and Health Sciences Research Institute (ICVS); School of Health Sciences , University of Minho ; Braga , Portugal
| | | | | | | | | |
Collapse
|
26
|
Meinhardt H. Dorsoventral patterning by the Chordin-BMP pathway: a unified model from a pattern-formation perspective for drosophila, vertebrates, sea urchins and nematostella. Dev Biol 2015; 405:137-48. [DOI: 10.1016/j.ydbio.2015.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
|
27
|
Meinhardt H. Models for patterning primary embryonic body axes: The role of space and time. Semin Cell Dev Biol 2015; 42:103-17. [PMID: 26126935 DOI: 10.1016/j.semcdb.2015.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022]
Abstract
Models for the generation and interpretation of spatial patterns are discussed. Crucial for these processes is an intimate link between self-enhancing and antagonistic reactions. For spatial patterning, long-ranging antagonistic reactions are required that restrict the self-enhancing reactions to generate organizing regions. Self-enhancement is also required for a permanent switch-like activation of genes. This self-enhancement is antagonized by the mutual repression of genes, making sure that in a particular cell only one gene of a set of possible genes become activated - a long range inhibition in the 'gene space'. The understanding how the main body axes are initiated becomes more straightforward if the evolutionary ancestral head/brain pattern and the trunk pattern is considered separately. To activate a specific gene at particular concentration of morphogenetic gradient, observations are compatible with a systematic and time-requiring 'promotion' from one gene to the next until the local concentration is insufficient to accomplish a further promotion. The achieved determination is stable against a fading of the morphogen, as required to allow substantial growth. Minor modifications lead to a purely time-dependent activation of genes; both mechanisms are involved to pattern the anteroposterior axis. A mutual activation of cell states that locally exclude each other accounts for many features of the segmental patterning of the trunk. A possible scenario for the evolutionary invention of segmentation is discussed that is based on a reemployment of interactions involved in asexual reproduction.
Collapse
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
28
|
Abstract
How vertebrates generate their anterior-posterior axis is a >90-year-old unsolved probem. This mechanism clearly works very differently in vertebrates than in Drosophila. Here, we present evidence from the Amphibian Xenopus that a time space translation mechanism underlies initial axial patterning in the trunk part of the axis. We show that a timer in the gastrula's non organiser mesoderm (NOM) undergoes sequential timed interactions with the Spemann organiser (SO) during gastrulation to generate the spatial axial pattern. Evidence is also presented that this mechanism works via Hox collinearity and that it requires Hox functionality. The NOM timer is putatively Hox temporal collinearity. This generates a spatially collinear axial Hox pattern in the emerging dorsal central nervous system and dorsal paraxial mesoderm. The interactions with the organiser are mediated by a BMP-anti BMP dependent mechanism. Hox functionality is implicated because knocking out the Hox1 paralogue group not only disrupts expression of Hox1 genes but also of the whole spatially collinear axial Hox sequence in the early embryo's A-P axis. This mechanism and its nature are discussed. The evidence supporting this hypothesis is presented and critically assessed. Strengths and weaknesses, questions, uncertainties and holes in the evidence are identified. Future directions are indicated.
Collapse
|
29
|
Abstract
Anterior-posterior (A-P) patterning of the vertebrate main body axis regulated by timing. Anterior structures are specified early, posterior late. (1) Timing involves timed decision points as emphasised by the Wnt studies of Sokol and colleagues. It also involves complex timers, where large parts of the axis are patterned sequentially by a common upstream mechanism (articles by Durston et al., Mullins et al., Oates et al.,). (2) A gastrula BMP-anti BMP dependent time-space translation (TST) mechanism was demonstrated for the trunk section of the axis (Durston). (3) Thisses' studies emphasise the importance of BMP-anti BMP and the organiser inducing factor nodal for A-P patterning. (4) Meinhardt's interesting studies on the organiser and A-P patterning are reviewed in relation to TST. (5) Mullins' investigations show that anti-BMP dependent TST starts earlier (at the blastula stage) and extends further anteriorly (to the anterior head). Sive's studies imply it may extend further still to the "extreme anterior domain" (EAD). (6) The somitogenesis timer (clock) is presented. Stern's and Oates' findings are discussed. (7) Relations between somitogenesis and axial TST are discussed. (8) Relations of classical axial patterning pathways to TST decision points and somitogenesis are inventarised. In conclusion, all of these findings point to an integral BMP-anti BMP dependent A-P TST mechanism, running from cement gland in the EAD, Six3 and the anterior tip of the forebrain at blastula stages to Hox13 and the tip of the tail by the mid neurula stage. TST acts via sequential timed transitions between ventral (unstable, timed) and dorsal (stabilised) states. In the trunk-tail, the timer is thought to be Hox temporal collinearity and TST depends on Hox function. In the head, TST is under investigation. The somitogenesis clock is upstream of the TST timer, providing precision in the posterior part of the axis at least. Classical A-P signalling pathways: retinoids, FGFs and Wnts, change behaviour at functional decision points on the axis.
Collapse
|
30
|
Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm. PLoS One 2014; 9:e115208. [PMID: 25514127 PMCID: PMC4267835 DOI: 10.1371/journal.pone.0115208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
Development and patterning of neural tissue in the vertebrate embryo involves a set of molecules and processes whose relationships are not fully understood. Classical embryology revealed a remarkable phenomenon known as vertical signalling, a gastrulation stage mechanism that copies anterior-posterior positional information from mesoderm to prospective neural tissue. Vertical signalling mediates unambiguous copying of complex information from one tissue layer to another. In this study, we report an investigation of this process in recombinates of mesoderm and ectoderm from gastrulae of Xenopus laevis. Our results show that copying of positional information involves non cell autonomous autoregulation of particular Hox genes whose expression is copied from mesoderm to neurectoderm in the gastrula. Furthermore, this information sharing mechanism involves unconventional translocation of the homeoproteins themselves. This conserved primitive mechanism has been known for three decades but has only recently been put into any developmental context. It provides a simple, robust way to pattern the neurectoderm using the Hox pattern already present in the mesoderm during gastrulation. We suggest that this mechanism was selected during evolution to enable unambiguous copying of rather complex information from cell to cell and that it is a key part of the original ancestral mechanism mediating axial patterning by the highly conserved Hox genes.
Collapse
|
31
|
Casaca A, Santos AC, Mallo M. Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Dev Dyn 2013; 243:24-36. [DOI: 10.1002/dvdy.24007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ana Casaca
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| | | | - Moisés Mallo
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| |
Collapse
|
32
|
Amali AA, Sie L, Winkler C, Featherstone M. Zebrafish hoxd4a acts upstream of meis1.1 to direct vasculogenesis, angiogenesis and hematopoiesis. PLoS One 2013; 8:e58857. [PMID: 23554940 PMCID: PMC3598951 DOI: 10.1371/journal.pone.0058857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/08/2013] [Indexed: 01/22/2023] Open
Abstract
Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM) at 13 hours post fertilization (hpf). Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation.
Collapse
Affiliation(s)
| | - Lawrence Sie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mark Featherstone
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
33
|
Abstract
The vertebrate A-P axis is a time axis. The head is made first and more and more posterior levels are made at later and later stages. This is different to the situation in most other animals, for example, in Drosophila. Central to this timing is Hox temporal collinearity (see below). This occurs rarely in the animal kingdom but is characteristic of vertebrates and is used to generate the primary axial Hox pattern using time space translation and to integrate successive derived patterns (see below). This is thus a different situation than in Drosophila, where the primary pattern guiding Hox spatial collinearity is generated externally, by the gap and segmentation genes.
Collapse
Affiliation(s)
- Aj Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Wassenaarseweg 72, 2333 BE, Leiden, Netherlands
| | | | | | | |
Collapse
|
34
|
Abstract
The elongated, snake-like skeleton, as it has convergently evolved in numerous reptilian and amphibian lineages, is from a developmental biologist’s point of view amongst the most fascinating anatomical peculiarities in the animal kingdom. This type of body plan is characterized by a greatly increased number of vertebrae, a reduction of skeletal regionalization along the primary body axis and loss of the limbs. Recent studies conducted on both mouse and snakes now hint at how changes inside the gene regulatory circuitries of the Hox genes and the somitogenesis clock likely underlie these striking departures from standard tetrapod morphology, suggesting scenarios by which snakes and other elongated species may have evolved from more ordinarily bodied ancestors.
Collapse
Affiliation(s)
- Joost M Woltering
- University of Geneva, Department of Genetics and Evolution, 30 quai Ernest Ansermet, 1211 CH, Genève, Switzerland
| |
Collapse
|
35
|
Attia L, Yelin R, Schultheiss TM. Analysis of nephric duct specification in the avian embryo. Development 2012; 139:4143-51. [PMID: 23034630 DOI: 10.1242/dev.085258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate kidney tissue exhibits variable morphology that in general increases in complexity when moving from anterior to posterior along the body axis. The nephric duct, a simple unbranched epithelial tube, is derived in the avian embryo from a rudiment located in the anterior intermediate mesoderm (IM) adjacent to somites 8 to 10. Using quail-chick chimeric embryos, the current study finds that competence to form nephric duct is fixed when IM precursor cells are still located in the primitive streak, significantly before the onset of duct differentiation. In the primitive streak, expression of the gene HoxB4 is associated with prospective duct IM, whereas expression of the more posterior Hox gene HoxA6 is associated with more posterior, non-duct-forming IM. Misexpression of HoxA6, but not of HoxB4, in prospective duct-forming regions of the IM resulted in repression of duct formation, suggesting a mechanism for the restriction of duct formation to the anterior-most IM. The results are discussed with respect to their implications for anterior-posterior patterning of kidney tissue and of mesoderm in general, and for the loss of duct-forming ability in more posterior regions of the IM that has occurred during vertebrate evolution.
Collapse
Affiliation(s)
- Lital Attia
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
36
|
François P, Siggia ED. Phenotypic models of evolution and development: geometry as destiny. Curr Opin Genet Dev 2012; 22:627-33. [PMID: 23026724 DOI: 10.1016/j.gde.2012.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/10/2012] [Accepted: 09/09/2012] [Indexed: 11/24/2022]
Abstract
Quantitative models of development that consider all relevant genes typically are difficult to fit to embryonic data alone and have many redundant parameters. Computational evolution supplies models of phenotype with relatively few variables and parameters that allows the patterning dynamics to be reduced to a geometrical picture for how the state of a cell moves. The clock and wavefront model, that defines the phenotype of somitogenesis, can be represented as a sequence of two discrete dynamical transitions (bifurcations). The expression-time to space map for Hox genes and the posterior dominance rule are phenotypes that naturally follow from computational evolution without considering the genetics of Hox regulation.
Collapse
Affiliation(s)
- Paul François
- McGill University, 3600 rue University, H3A2T8, Montreal, QC, Canada.
| | | |
Collapse
|
37
|
Durston AJ. Global posterior prevalence is unique to vertebrates: a dance to the music of time? Dev Dyn 2012; 241:1799-807. [PMID: 22930553 DOI: 10.1002/dvdy.23852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
We reach the conclusion that posterior prevalence, a collinear property considered important for Hox complex function, is so far unique, in a global form, to vertebrates. Why is this? We suspect this is because posterior prevalence is explicitly connected to the vertebrate form of Hox temporal collinearity, which is central to axial patterning.
Collapse
Affiliation(s)
- A J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, The Netherlands.
| |
Collapse
|
38
|
Julier A, Goll C, Korte B, Knöchel W, Wacker SA. Pou-V factor Oct25 regulates early morphogenesis inXenopus laevis. Dev Growth Differ 2012; 54:702-16. [DOI: 10.1111/j.1440-169x.2012.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/16/2012] [Accepted: 07/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra Julier
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Claudio Goll
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Brigitte Korte
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Walter Knöchel
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | | |
Collapse
|
39
|
|
40
|
Godard BG, Mazan S. Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state. J Anat 2012; 222:56-66. [PMID: 22905913 DOI: 10.1111/j.1469-7580.2012.01552.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 01/09/2023] Open
Abstract
In the past few years, the small spotted dogfish has become the primary model for analyses of early development in chondrichthyans. Its phylogenetic position makes it an ideal outgroup to reconstruct the ancestral gnathostome state by comparisons with established vertebrate model organisms. It is also a suitable model to address the molecular bases of lineage-specific diversifications such as the rise of extraembryonic tissues, as it is endowed with a distinct extraembryonic yolk sac and yolk duct ensuring exchanges between the embryo and a large undivided vitelline mass. Experimental or functional approaches such as cell marking or in ovo pharmacological treatments are emerging in this species, but recent analyses of early development in this species have primarily concentrated on molecular descriptions. These data show the dogfish embryo exhibits early polarities reflecting the dorso-ventral axis of amphibians and teleosts at early blastula stages and an atypical anamniote molecular pattern during gastrulation, independently of the presence of extraembryonic tissues. They also highlight unexpected relationships with amniotes, with a strikingly similar Nodal-dependent regional pattern in the extraembryonic endoderm. In this species, extraembryonic cell fates seem to be determined by differential cell behaviors, which lead to cell allocation in extraembryonic and embryonic tissues, rather than by cell regional identity. We suggest that this may exemplify an early evolutionary step in the rise of extraembryonic tissues, possibly related to quantitative differences in the signaling activities, which shape the early embryo. These results highlight the conservation across gnathostomes of a highly constrained core genetic program controlling early patterning. This conservation may be obscured in some lineages by taxa-specific diversifications such as specializations of extraembryonic nutritive tissues.
Collapse
Affiliation(s)
- B G Godard
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff, France
| | | |
Collapse
|
41
|
Durston AJ. Developmental principles: fact or fiction. ScientificWorldJournal 2012; 2012:980151. [PMID: 22489210 PMCID: PMC3296223 DOI: 10.1100/2012/980151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022] Open
Abstract
While still at school, most of us are deeply impressed by the underlying principles that so beautifully explain why the chemical elements are ordered as they are in the periodic table, and may wonder, with the theoretician Brian Goodwin, “whether there might be equally powerful principles that account for the awe-inspiring diversity of body forms in the living realm”. We have considered the arguments for developmental principles, conclude that they do exist and have specifically identified features that may generate principles associated with Hox patterning of the main body axis in bilaterian metazoa in general and in the vertebrates in particular. We wonder whether this exercise serves any purpose. The features we discuss were already known to us as parts of developmental mechanisms and defining developmental principles (how, and at which level?) adds no insight. We also see little profit in the proposal by Goodwin that there are principles outside the emerging genetic mechanisms that need to be taken into account. The emerging developmental genetic hierarchies already reveal a wealth of interesting phenomena, whatever we choose to call them.
Collapse
Affiliation(s)
- A J Durston
- Sylvius Laboratory, Institute of Biology, University of Leiden, Wassenaarseweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
42
|
Schyr RB, Shabtai Y, Shashikant CS, Fainsod A. Cdx1 is essential for the initiation of
HoxC8
expression during early embryogenesis. FASEB J 2012; 26:2674-84. [DOI: 10.1096/fj.11-191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Ben‐Haroush Schyr
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Cooduvalli S. Shashikant
- Department of Dairy and Animal ScienceCollege of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| |
Collapse
|
43
|
François P. Evolution In Silico: From Network Structure to Bifurcation Theory. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:157-82. [DOI: 10.1007/978-1-4614-3567-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Michaut L, Jansen HJ, Bardine N, Durston AJ, Gehring WJ. Analyzing the function of a hox gene: an evolutionary approach. Dev Growth Differ 2011; 53:982-93. [PMID: 22150153 DOI: 10.1111/j.1440-169x.2011.01307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an evolutionary approach to dissecting conserved developmental mechanisms. We reason that important mechanisms for making the bodyplan will act early, to generate the major features of the body and that they will be conserved in evolution across many metazoa, and thus, that they will be available in very different animals. This led to our specific approach of microarrays to screen for very early conserved developmental regulators in parallel in an insect, Drosophila and a vertebrate, Xenopus. We screened for the earliest conserved targets of the ectopically expressed hox gene Hoxc6/Antennapedia in both species and followed these targets up, using in situ hybridization, in the Xenopus system. The results indicate that relatively few of the early Hox target genes are conserved: these are mainly involved in the specification of the antero-posterior body axis and in gastrulation.
Collapse
Affiliation(s)
- Lydia Michaut
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
45
|
In der Rieden PMJ, Jansen HJ, Durston AJ. XMeis3 is necessary for mesodermal Hox gene expression and function. PLoS One 2011; 6:e18010. [PMID: 21464931 PMCID: PMC3065463 DOI: 10.1371/journal.pone.0018010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/21/2011] [Indexed: 12/13/2022] Open
Abstract
Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation.
Collapse
|
46
|
Aulehla A, Pourquié O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol 2010; 2:a000869. [PMID: 20182616 DOI: 10.1101/cshperspect.a000869] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sequential formation of somites along the anterior-posterior axis is under control of multiple signaling gradients involving the Wnt, FGF, and retinoic acid (RA) pathways. These pathways show graded distribution of signaling activity within the paraxial mesoderm of vertebrate embryos. Although Wnt and FGF signaling show highest activity in the posterior, unsegmented paraxial mesoderm (presomitic mesoderm [PSM]), RA signaling establishes a countergradient with the highest activity in the somites. The generation of these graded activities relies both on classical source-sink mechanisms (for RA signaling) and on an RNA decay mechanism (for FGF signaling). Numerous studies reveal the tight interconnection among Wnt, FGF, and RA signaling in controlling paraxial mesoderm differentiation and in defining the somite-forming unit. In particular, the relationship to a molecular oscillator acting in somite precursors in the PSM-called the segmentation clock-has been recently addressed. These studies indicate that high levels of Wnt and FGF signaling are required for the segmentation clock activity. Furthermore, we discuss how these signaling gradients act in a dose-dependent manner in the progenitors of the paraxial mesoderm, partly by regulating cell movements during gastrulation. Finally, links between the process of axial specification of vertebral segments and Hox gene expression are discussed.
Collapse
Affiliation(s)
- Alexander Aulehla
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
47
|
Review: Time–space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 2010; 95:250-5. [DOI: 10.1016/j.ygeno.2009.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022]
|
48
|
In der Rieden PMJ, Vilaspasa FL, Durston AJ. Xwnt8 directly initiates expression of labial Hox genes. Dev Dyn 2010; 239:126-39. [PMID: 19623617 DOI: 10.1002/dvdy.22020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201).
Collapse
Affiliation(s)
- Paul M J In der Rieden
- Hubrecht Laboratorium, Nederlands Instituut voor Ontwikkelingsbiologie, Utrecht, The Netherlands
| | | | | |
Collapse
|
49
|
Krneta-Stankic V, Sabillo A, Domingo CR. Temporal and spatial patterning of axial myotome fibers in Xenopus laevis. Dev Dyn 2010; 239:1162-77. [PMID: 20235228 PMCID: PMC3086394 DOI: 10.1002/dvdy.22275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Somites give rise to the vertebral column and segmented musculature of adult vertebrates. The cell movements that position cells within somites along the anteroposterior and dorsoventral axes are not well understood. Using a fate mapping approach, we show that at the onset of Xenopus laevis gastrulation, mesoderm cells undergo distinct cell movements to form myotome fibers positioned in discrete locations within somites and along the anteroposterior axis. We show that the distribution of presomitic cells along the anteroposterior axis is influenced by convergent and extension movements of the notochord. Heterochronic and heterotopic transplantations between presomitic gastrula and early tail bud stages show that these cells are interchangeable and can form myotome fibers in locations determined by the host embryo. However, additional transplantation experiments revealed differences in the competency of presomitic cells to form myotome fibers, suggesting that maturation within the tail bud presomitic mesoderm is required for myotome fiber differentiation.
Collapse
Affiliation(s)
| | - Armbien Sabillo
- Department of Biology, San Francisco State University, San Francisco, CA, 94132
| | - Carmen R. Domingo
- Department of Biology, San Francisco State University, San Francisco, CA, 94132
| |
Collapse
|
50
|
Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan. Dev Biol 2010; 338:98-106. [DOI: 10.1016/j.ydbio.2009.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
|