1
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Zecca M, Struhl G. A unified mechanism for the control of Drosophila wing growth by the morphogens Decapentaplegic and Wingless. PLoS Biol 2021; 19:e3001111. [PMID: 33657096 PMCID: PMC8148325 DOI: 10.1371/journal.pbio.3001111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/25/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
Development of the Drosophila wing-a paradigm of organ development-is governed by 2 morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Both proteins are produced by defined subpopulations of cells and spread outwards, forming gradients that control gene expression and cell pattern as a function of concentration. They also control growth, but how is unknown. Most studies have focused on Dpp and yielded disparate models in which cells throughout the wing grow at similar rates in response to the grade or temporal change in Dpp concentration or to the different amounts of Dpp "equalized" by molecular or mechanical feedbacks. In contrast, a model for Wg posits that growth is governed by a progressive expansion in morphogen range, via a mechanism in which a minimum threshold of Wg sustains the growth of cells within the wing and recruits surrounding "pre-wing" cells to grow and enter the wing. This mechanism depends on the capacity of Wg to fuel the autoregulation of vestigial (vg)-the selector gene that specifies the wing state-both to sustain vg expression in wing cells and by a feed-forward (FF) circuit of Fat (Ft)/Dachsous (Ds) protocadherin signaling to induce vg expression in neighboring pre-wing cells. Here, we have subjected Dpp to the same experimental tests used to elucidate the Wg model and find that it behaves indistinguishably. Hence, we posit that both morphogens act together, via a common mechanism, to control wing growth as a function of morphogen range.
Collapse
Affiliation(s)
- Myriam Zecca
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Gary Struhl
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
3
|
Berndt AJ, Othonos KM, Lian T, Flibotte S, Miao M, Bhuiyan SA, Cho RY, Fong JS, Hur SA, Pavlidis P, Allan DW. A low affinity cis-regulatory BMP response element restricts target gene activation to subsets of Drosophila neurons. eLife 2020; 9:59650. [PMID: 33124981 PMCID: PMC7669266 DOI: 10.7554/elife.59650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Retrograde BMP signaling and canonical pMad/Medea-mediated transcription regulate diverse target genes across subsets of Drosophila efferent neurons, to differentiate neuropeptidergic neurons and promote motor neuron terminal maturation. How a common BMP signal regulates diverse target genes across many neuronal subsets remains largely unresolved, although available evidence implicates subset-specific transcription factor codes rather than differences in BMP signaling. Here we examine the cis-regulatory mechanisms restricting BMP-induced FMRFa neuropeptide expression to Tv4-neurons. We find that pMad/Medea bind at an atypical, low affinity motif in the FMRFa enhancer. Converting this motif to high affinity caused ectopic enhancer activity and eliminated Tv4-neuron expression. In silico searches identified additional motif instances functional in other efferent neurons, implicating broader functions for this motif in BMP-dependent enhancer activity. Thus, differential interpretation of a common BMP signal, conferred by low affinity pMad/Medea binding motifs, can contribute to the specification of BMP target genes in efferent neuron subsets.
Collapse
Affiliation(s)
- Anthony Je Berndt
- Department of Food & Fuel for the 21st Century, University of California San Diego, San Diego, United States
| | - Katerina M Othonos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, Canada
| | - Mo Miao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | | - Raymond Y Cho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Justin S Fong
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Seo Am Hur
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Sharifkhodaei Z, Auld VJ. Overexpressed Gliotactin activates BMP signaling through interfering with the Tkv-Dad association. Genome 2020; 64:97-108. [PMID: 33064024 DOI: 10.1139/gen-2020-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial junctions ensure cell-cell adhesion and establish permeability barriers between cells. At the corners of epithelia, the tricellular junction (TCJ) is formed by three adjacent epithelial cells and generates a functional barrier. In Drosophila, a key TCJ protein is Gliotactin (Gli) where loss of Gli disrupts barrier formation and function. Conversely, overexpressed Gli spreads away from the TCJ and triggers apoptosis, delamination, and cell migration. Thus, Gli protein levels are tightly regulated and by two mechanisms, at the protein levels by tyrosine phosphorylation and endocytosis and at the mRNA level through microRNA-184. Regulation of Gli mRNA is mediated through a Gli-BMP-miR184 feedback loop. Excessive Gli triggers BMP signaling pathway through the activation of Tkv type-I BMP receptor and Mad. Elevated level of pMad induces micrRNA-184 expression which in turn targets the Gli 3'UTR and mRNA degradation. Gli activation of Tkv is not through its ligand Dpp but rather through the inhibition of Dad, an inhibitory-Smad. Here, we show that ectopic expression of Gli interferes with Tkv-Dad association by sequestering Dad away from Tkv. The reduced inhibitory effect of Dad on Tkv results in the increased Tkv-pMad signaling activity, and this effect is continuous through larval and pupal wing formation.
Collapse
Affiliation(s)
| | - Vanessa J Auld
- Department of Zoology, University of British Columbia, Vancouver, B.C., Canada.,Department of Zoology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
5
|
Bakker R, Mani M, Carthew RW. The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. eLife 2020; 9:e56076. [PMID: 32568073 PMCID: PMC7340504 DOI: 10.7554/elife.56076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development. One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared our experimental results with predictions from stochastic models of transcription, which indicated that the transcription levels of these genes appear to share a common method of control via burst frequency modulation. Our data help further elucidate the link between developmental gene regulatory mechanisms and transcriptional bursting.
Collapse
Affiliation(s)
- Rachael Bakker
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
6
|
Chen Z. The formation of the Thickveins (Tkv) gradient in Drosophila wing discs: A theoretical study. J Theor Biol 2019; 474:25-41. [PMID: 30998935 DOI: 10.1016/j.jtbi.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/06/2019] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
The development of the wing imaginal disc (wing disc) is commonly adopted for the studies of patterning and growth which are two fundamental problems in developmental biology. Decapentaplegic (Dpp) signaling regulates several aspects of wing development, such as the anterior (A)-posterior (P) patterning, cellular growth rate, and cell adhesion. The distribution and activity of Dpp signaling are controlled in part by the expression level of its major type I receptor, Thickveins (Tkv). In this paper, we focus on theoretically investigating mechanisms by which the highly asymmetric pattern of Tkv is established in Drosophila wing discs. To the end, a mathematical model of Hh signaling and Dpp signaling is proposed and validated by comparisons with experimental observations. Our model provides a comprehensive view of the formation of Tkv gradients in wing discs. We found that engrailed (En), Hedgehog (Hh) signaling, and Dpp signaling cooperate to establish the asymmetric gradients of Tkv and pMad in the wing disc. Moreover, our model suggests a Brinker-mediated mechanism of Dpp-dependent repression of Tkv. Based on this mechanism, a couple of predicted experimental observations have been provided for further lab confirmation.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, United States.
| |
Collapse
|
7
|
Al Khatib A, Siomava N, Iannini A, Posnien N, Casares F. Specific expression and function of the Six3 optix in Drosophila serially homologous organs. Biol Open 2017. [PMID: 28642242 PMCID: PMC5576073 DOI: 10.1242/bio.023606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organ size and pattern results from the integration of two positional information systems. One global information system, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of Drosophila represent a paradigmatic example of this coordination. The Hox gene Ultrabithorax (Ubx), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern. However, the mechanisms of the Hox-signal integration in this well-studied system are incomplete. Here, we have investigated this issue by studying the expression and function of the Six3 transcription factor optix during Drosophila wing and haltere development. We find that in both organs, Dpp defines the expression domain of optix through repression, and that the specific position of this domain in wing and haltere seems to reflect the differential signaling profile among these organs. We show that optix expression in wing and haltere primordia is conserved beyond Drosophila in other higher diptera. In Drosophila, optix is necessary for the growth of wing and haltere. In the wing, optix is required for the growth of the most anterior/proximal region (the ‘marginal cell’) and for the correct formation of sensory structures along the proximal anterior wing margin; the halteres of optix mutants are also significantly reduced. In addition, in the haltere, optix is necessary for the suppression of sensory bristles. Summary: The position of the Six3 optix is regulated by the Dpp pathway during wing and haltere development, and controls the size of both serially homologous organs.
Collapse
Affiliation(s)
- Amer Al Khatib
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain.,Department of Biology, University of Florence, I-50019, Florence, Italy
| | - Natalia Siomava
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| | - Nico Posnien
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| |
Collapse
|
8
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Romanova-Michaelides M, Aguilar-Hidalgo D, Jülicher F, Gonzalez-Gaitan M. The wing and the eye: a parsimonious theory for scaling and growth control? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:591-608. [PMID: 26108346 DOI: 10.1002/wdev.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
Abstract
How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems.
Collapse
Affiliation(s)
| | - Daniel Aguilar-Hidalgo
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Frank Jülicher
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Hamaratoglu F, Affolter M, Pyrowolakis G. Dpp/BMP signaling in flies: from molecules to biology. Semin Cell Dev Biol 2014; 32:128-36. [PMID: 24813173 DOI: 10.1016/j.semcdb.2014.04.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/30/2014] [Indexed: 01/08/2023]
Abstract
Decapentaplegic (Dpp), the fly homolog of the secreted mammalian BMP2/4 signaling molecules, is involved in almost all aspects of fly development. Dpp has critical functions at all developmental stages, from patterning of the eggshell to the determination of adult intestinal stem cell identity. Here, we focus on recent findings regarding the transcriptional regulatory logic of the pathway, on a new feedback regulator, Pentagone, and on Dpp's roles in scaling and growth of the Drosophila wing.
Collapse
Affiliation(s)
- Fisun Hamaratoglu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Centre for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Dunipace L, Saunders A, Ashe H, Stathopoulos A. Autoregulatory feedback controls sequential action of cis-regulatory modules at the brinker locus. Dev Cell 2013; 26:536-43. [PMID: 24044892 PMCID: PMC3782659 DOI: 10.1016/j.devcel.2013.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 01/29/2023]
Abstract
cis-regulatory modules (CRMs) act sequentially to regulate temporal expression of genes, but how the switch from one to the next is accomplished is not well understood. To provide insight, here we investigate the cis-regulatory system controlling brinker (brk) expression in the Drosophila embryo. Two distally located CRMs support expression at different times, while a promoter-proximal element (PPE) is required to support their action. In the absence of Brk protein itself or upon mutagenesis of Brk binding sites within the PPE, the late-acting CRM, specifically, is delayed. This block to late-acting CRM function appears to be removed when the early-acting CRM is also deleted. These results demonstrate that autoregulatory feedback is necessary for the early-acting CRM to disengage from the promoter so that the late-acting CRM may act. Autoregulation may be a commonly used mechanism to control sequential CRM action necessary for dynamic gene expression throughout the course of development.
Collapse
Affiliation(s)
- Leslie Dunipace
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L. Ashe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
12
|
Peterson AJ, O'Connor MB. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements. Development 2013; 140:649-59. [PMID: 23293296 DOI: 10.1242/dev.085605] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Imaginal disc development in Drosophila requires coordinated cellular proliferation and tissue patterning. In our studies of TGFβ superfamily signaling components, we found that a protein null mutation of Smad2, the only Activin subfamily R-Smad in the fruit fly, produces overgrown wing discs that resemble gain of function for BMP subfamily signaling. The wing discs are expanded specifically along the anterior-posterior axis, with increased proliferation in lateral regions. The morphological defect is not observed in mutants for the TGFβ receptor baboon, and epistasis tests showed that baboon is epistatic to Smad2 for disc overgrowth. Rescue experiments indicate that Baboon binding, but not canonical transcription factor activity, of Smad2 is required for normal disc growth. Smad2 mutant discs generate a P-Mad stripe that is narrower and sharper than the normal gradient, and activation targets are correspondingly expressed in narrowed domains. Repression targets of P-Mad are profoundly mis-regulated, with brinker and pentagone reporter expression eliminated in Smad2 mutants. Loss of expression requires a silencer element previously shown to be controlled by BMP signaling. Epistasis experiments show that Baboon, Mad and Schnurri are required to mediate the ectopic silencer output in the absence of Smad2. Taken together, our results show that loss of Smad2 permits promiscuous Baboon activity, which represses genes subject to control by Mad-dependent silencer elements. The absence of Brinker and Pentagone in Smad2 mutants explains the compound wing disc phenotype. Our results highlight the physiological relevance of substrate inhibition of a kinase, and reveal a novel interplay between the Activin and BMP pathways.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
13
|
Ziv O, Finkelstein R, Suissa Y, Dinur T, Deshpande G, Gerlitz O. Inverse regulation of target genes at the brink of the BMP morphogen activity gradient. J Cell Sci 2012; 125:5811-8. [PMID: 22956540 DOI: 10.1242/jcs.110569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMP-dependent patterning in the Drosophila melanogaster wing imaginal disc serves as a paradigm to understand how morphogens specify cell fates. The observed profile of the transcriptional response to the graded signal of BMP relies upon two counter-active gradients of pMad and Brinker (Brk). This patterning model is inadequate to explain the expression of target genes, like vestigial and spalt, in lateral regions of the wing disc where BMP signals decline and Brk levels peak. Here, we show that in contrast to the reciprocal repressor gradient mechanism, where Brk represses BMP targets in medial regions, target expression in lateral regions is downregulated by BMP signalling and activated by Brk. Brk induces lateral expression indirectly, apparently through repression of a negative regulator. Our findings provide a model explaining how the expression of an established BMP target is differentially and inversely regulated along the anterior-posterior axis of the wing disc.
Collapse
Affiliation(s)
- Oren Ziv
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, 91120 Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Dpp signaling activity requires Pentagone to scale with tissue size in the growing Drosophila wing imaginal disc. PLoS Biol 2011; 9:e1001182. [PMID: 22039350 PMCID: PMC3201923 DOI: 10.1371/journal.pbio.1001182] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/15/2011] [Indexed: 11/25/2022] Open
Abstract
The activity of the Dpp morphogen adapts to tissue size in the growing Drosophila wing imaginal disc, and Pentagone, an important secreted feedback regulator of the Dpp pathway, is required for this adaptation. The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth. Scaling, the fitting of pattern to size, manifests itself in numerous examples around us. During development, individual body parts scale up to fit the overall body size. Starved animals form smaller adults with proportionally smaller parts, and amphibian embryos can form normally proportioned adults after extreme surgical operations. How scaling is achieved is not well understood. Here, we establish the Drosophila wing imaginal disc, the precursor tissue of the adult wing, as a model to study scaling quantitatively during growth. In this model, we define scaling as the preservation of proportions of gene expression domains with tissue size during disc growth. The Decapentaplegic (Dpp) morphogen is known to play a central role in Drosophila wing formation and co-coordinately regulates growth and patterning. We found that as the disc grows, the Dpp response expands and scales with the tissue size. Interestingly, scaling is not perfect at all positions in the field. The scaling of the target gene domains is best where they have a function; Spalt, for example, scales best at the position in the anterior compartment where it helps to form one of the anterior veins of the wing. Analysis of mutants for pentagone, a transcriptional target of Dpp that encodes a secreted feedback regulator of the pathway, indicates that Pentagone plays a key role in scaling the Dpp gradient activity.
Collapse
|
15
|
Gunbin KV, Suslov VV, Kolchanov NA. Molecular-genetic systems of development: Functional dynamics and molecular evolution. BIOCHEMISTRY (MOSCOW) 2011; 73:219-30. [DOI: 10.1134/s0006297908020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lander AD, Lo WC, Nie Q, Wan FYM. The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning. Cold Spring Harb Perspect Biol 2010; 1:a002022. [PMID: 20066078 DOI: 10.1101/cshperspect.a002022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A large, diverse, and growing number of strategies have been proposed to explain how morphogen gradients achieve robustness and precision. We argue that, to be useful, the evaluation of such strategies must take into account the constraints imposed by competing objectives and performance tradeoffs. This point is illustrated through a mathematical and computational analysis of the strategy of self-enhanced morphogen clearance. The results suggest that the usefulness of this strategy comes less from its ability to increase robustness to morphogen source fluctuations per se, than from its ability to overcome specific kinds of noise, and to increase the fraction of a morphogen gradient within which robust threshold positions may be established. This work also provides new insights into the longstanding question of why morphogen gradients show a maximum range in vivo.
Collapse
Affiliation(s)
- Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697-2300, USA.
| | | | | | | |
Collapse
|
17
|
Shen J, Dahmann C, Pflugfelder GO. Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting. BMC DEVELOPMENTAL BIOLOGY 2010; 10:23. [PMID: 20178599 PMCID: PMC2838827 DOI: 10.1186/1471-213x-10-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/23/2010] [Indexed: 12/02/2022]
Abstract
Background Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity. Results We show that the transcription factor Omb forms, in fact, a symmetrical gradient on both sides of the A/P compartment boundary. Disruptions of the Omb gradient lead to a re-organization of the epithelial cytoskeleton and to a retraction of cells toward the basal membrane suggesting that the Omb gradient is required for correct epithelial morphology. Moreover, by analysing the shape of omb gain- and loss-of-function clones, we find that Omb promotes cell sorting along the A/P axis in a concentration-dependent manner. Conclusions Our findings show that Omb distribution in the wing imaginal disc is described by a gradient rather than a step function. Graded Omb expression is necessary for normal cell morphogenesis and cell affinity and sharp spatial discontinuities must be avoided to allow normal wing development.
Collapse
Affiliation(s)
- Jie Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
18
|
Nelson CM. Geometric control of tissue morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:903-10. [PMID: 19167433 PMCID: PMC2683193 DOI: 10.1016/j.bbamcr.2008.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 11/29/2008] [Accepted: 12/19/2008] [Indexed: 01/16/2023]
Abstract
Morphogenesis is the dynamic and regulated change in tissue form that leads to creation of the body plan and development of mature organs. Research over the past several decades has uncovered a multitude of genetic factors required for morphogenesis in animals. The behaviors of individual cells within a developing tissue are determined by combining these genetic signals with information from the surrounding microenvironment. At any point in time, the local microenvironment is influenced by macroscale tissue geometry, which sculpts long range signals by affecting gradients of morphogens and mechanical stresses. The geometry of a tissue thus acts as both a template and instructive cue for further morphogenesis.
Collapse
Affiliation(s)
- Celeste M Nelson
- Department of Chemical Engineering, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544, USA.
| |
Collapse
|
19
|
Garaulet DL, Foronda D, Calleja M, Sánchez-Herrero E. Polycomb-dependentUltrabithoraxHox gene silencing induced by high Ultrabithorax levels inDrosophila. Development 2008; 135:3219-28. [DOI: 10.1242/dev.025809] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ultrabithorax (Ubx) gene of Drosophilaspecifies the third thoracic and first abdominal segments. Ubxexpression is controlled by several mechanisms, including negative regulation by its own product. We show here that if Ubx expression levels are inappropriately elevated, overriding the auto-regulatory control, a permanent repression of Ubx is established. This continuous repression becomes independent of the presence of exogenous Ubx and leads to the paradoxical result that an excess of Ubx results in a phenotype of Ubx loss. The mechanism of permanent repression depends on Polycomb-group genes. Absence of endogenous Ubxtranscription when Ubx levels are highly elevated probably activates Polycomb complexes on a Polycomb response element located in the Ubx major intron. This, in turn, brings about permanent repression of Ubx transcription. Similar results are obtained with the gene engrailed, showing that this mechanism of permanent repression may be a general one for genes with negative auto-regulation when levels of expression are transitorily elevated.
Collapse
Affiliation(s)
- Daniel L. Garaulet
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - Manuel Calleja
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.),Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco,28049 Madrid, Spain
| |
Collapse
|
20
|
The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Mol Cell Biol 2008; 28:5312-27. [PMID: 18591252 DOI: 10.1128/mcb.00128-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone demethylase lysine demethylase 5b (KDM5b) specifically demethylates lysine 4 of histone H3 (meH3K4), thereby repressing gene transcription. KDM5b regulates cell cycle control genes in cancer and is expressed in the early epiblast. This suggests that KDM5b plays a developmental role by maintaining uncommitted progenitors. Here we show that transient overexpression of KDM5b in embryonic stem cells decreases the expression of at least three different modulators of cell fate decisions, Egr1, p27(KIP1), and BMI1, by demethylation of their promoters. Constitutively increased KDM5b expression results in an increased mitotic rate and a decreased global 3meH3K4 but no change in cell identity. Results of two separate differentiation assays, neural differentiation and embryoid body EB (EB) formation, showed that KDM5b reduced the terminally differentiated cells and increased proliferating progenitors. These were achieved by two mechanisms, blocking of the upregulation of cell lineage markers and maintenance of cyclins, that allowed cells to escape differentiation and remain uncommitted. Additionally, EBs maintain high levels of Oct4 and Nanog and can be dissociated to reestablish highly proliferative cultures. The persistence of uncommitted progenitors may be due to the direct regulation of the Tcf/Lef family member mTcf3/hTcf7L1, an upstream regulator of Nanog expression. These findings demonstrate a role for KDM5b in the choice between proliferation and differentiation during development.
Collapse
|
21
|
Yao LC, Phin S, Cho J, Rushlow C, Arora K, Warrior R. Multiple modular promoter elements drive graded brinker expression in response to the Dpp morphogen gradient. Development 2008; 135:2183-92. [PMID: 18506030 PMCID: PMC3027062 DOI: 10.1242/dev.015826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Morphogen gradients play fundamental roles in patterning and cell specification during development by eliciting differential transcriptional responses in target cells. In Drosophila, Decapentaplegic (Dpp), the BMP2/4 homolog, downregulates transcription of the nuclear repressor brinker (brk) in a concentration-dependent manner to generate an inverse graded distribution. Both Dpp and Brk are crucial for directing Dpp target gene expression in defined domains and the consequent execution of distinct developmental programs. Thus, determining the mechanism by which the brk promoter interprets the Dpp activity gradient is essential for understanding both Dpp-dependent patterning and how graded signaling activity can generate different responses through transcriptional repression. We have uncovered key features of the brk promoter that suggest it uses a complex enhancer logic not represented in current models. First, we find that the regulatory region contains multiple compact modules that can independently drive brk-like expression patterns. Second, each module contains binding sites for the Schnurri/Mad/Medea (SMM) complex, which mediates Dpp-dependent repression, linked to regions that direct activation. Third, the SMM repression complex acts through a distance-dependent mechanism that probably uses the canonical co-repressor C-terminal Binding Protein (CtBP). Finally, our data suggest that inputs from multiple regulatory modules are integrated to generate the final pattern. This unusual promoter organization may be necessary for brk to respond to the Dpp gradient in a precise and robust fashion.
Collapse
Affiliation(s)
- Li-Chin Yao
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California Irvine, Irvine, CA 92612, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bollenbach T, Pantazis P, Kicheva A, Bökel C, González-Gaitán M, Jülicher F. Precision of the Dpp gradient. Development 2008; 135:1137-46. [PMID: 18296653 DOI: 10.1242/dev.012062] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogen concentration gradients provide positional information by activating target genes in a concentration-dependent manner. Recent reports show that the gradient of the syncytial morphogen Bicoid seems to provide precise positional information to determine target gene domains. For secreted morphogenetic ligands, the precision of the gradients, the signal transduction and the reliability of target gene expression domains have not been studied. Here we investigate these issues for the TGF-beta-type morphogen Dpp. We first studied theoretically how cell-to-cell variability in the source, the target tissue, or both, contribute to the variations of the gradient. Fluctuations in the source and target generate a local maximum of precision at a finite distance to the source. We then determined experimentally in the wing epithelium: (1) the precision of the Dpp concentration gradient; (2) the precision of the Dpp signaling activity profile; and (3) the precision of activation of the Dpp target gene spalt. As captured by our theoretical description, the Dpp gradient provides positional information with a maximal precision a few cells away from the source. This maximal precision corresponds to a positional uncertainly of about a single cell diameter. The precision of the Dpp gradient accounts for the precision of the spalt expression range, implying that Dpp can act as a morphogen to coarsely determine the expression pattern of target genes.
Collapse
Affiliation(s)
- Tobias Bollenbach
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Nahmad M, Glass L, Abouheif E. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model. Evol Dev 2008; 10:360-74. [DOI: 10.1111/j.1525-142x.2008.00244.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Abstract
Drosophila leg development requires the cooperation of two secreted signals, Decapentaplegic (Dpp) and Wingless (Wg), to form the proximodistal (PD) axis. Wg and Dpp are also required to pattern the dorsoventral (DV) axis of the leg. Here, we show that Distalless (Dll) and dachshund (dac), genes expressed at different positions along the PD axis, are activated by Wg signaling and repressed by Brinker (Brk), a transcriptional repressor in the Dpp pathway. The levels of both Brk and Wg determine which of these PD genes is activated. Surprisingly, Brk does not play a role in DV axis specification in the leg, suggesting that Dpp uses two distinct mechanisms for generating the PD and DV axes. Based on these results, we present a model for how Dpp and Wg, which are present as dorsal and ventral gradients, respectively, induce nearly circular domains of gene expression along the PD axis.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA
| |
Collapse
|
25
|
Engström PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 2007; 17:1898-908. [PMID: 17989259 DOI: 10.1101/gr.6669607] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insect genomes contain larger blocks of conserved gene order (microsynteny) than would be expected under a random breakage model of chromosome evolution. We present evidence that microsynteny has been retained to keep large arrays of highly conserved noncoding elements (HCNEs) intact. These arrays span key developmental regulatory genes, forming genomic regulatory blocks (GRBs). We recently described GRBs in vertebrates, where most HCNEs function as enhancers and HCNE arrays specify complex expression programs of their target genes. Here we present a comparison of five Drosophila genomes showing that HCNE density peaks centrally in large synteny blocks containing multiple genes. Besides developmental regulators that are likely targets of HCNE enhancers, HCNE arrays often span unrelated neighboring genes. We describe differences in core promoters between the target genes and the unrelated genes that offer an explanation for the differences in their responsiveness to enhancers. We show examples of a striking correspondence between boundaries of synteny blocks, HCNE arrays, and Polycomb binding regions, confirming that the synteny blocks correspond to regulatory domains. Although few noncoding elements are highly conserved between Drosophila and the malaria mosquito Anopheles gambiae, we find that A. gambiae regions orthologous to Drosophila GRBs contain an equivalent distribution of noncoding elements highly conserved in the yellow fever mosquito Aëdes aegypti and coincide with regions of ancient microsynteny between Drosophila and mosquitoes. The structural and functional equivalence between insect and vertebrate GRBs marks them as an ancient feature of metazoan genomes and as a key to future studies of development and gene regulation.
Collapse
Affiliation(s)
- Pär G Engström
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Bergen 5008, Norway
| | | | | | | | | |
Collapse
|
26
|
Affolter M, Basler K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 2007; 8:663-74. [PMID: 17703237 DOI: 10.1038/nrg2166] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Morphogens have been linked to numerous developmental processes, including organ patterning and the control of organ size. Here we review how different experimental approaches have led to an unprecedented level of molecular knowledge about the patterning role of the Drosophila melanogaster morphogen Decapentaplegic (DPP, the homologue of vertebrate bone morphogenetic protein, or BMP), the first validated secreted morphogen. In addition, we discuss how little is known about the role of the DPP morphogen in the control of organ growth and organ size. Continued efforts to elucidate the role of DPP in D. melanogaster is likely to shed light on this fundamental question in the near future.
Collapse
Affiliation(s)
- Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
27
|
Gao S, Laughon A. Flexible interaction of Drosophila Smad complexes with bipartite binding sites. ACTA ACUST UNITED AC 2007; 1769:484-96. [PMID: 17610966 DOI: 10.1016/j.bbaexp.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 04/24/2007] [Accepted: 05/29/2007] [Indexed: 01/11/2023]
Abstract
A subset of BMP-responsive enhancer elements are characterized by pairing of a GC-rich Smad1 binding site and an SBE-type Smad4 binding site. Such paired, or bipartite, sites are in some cases just 5 bp apart and thus might be contacted by a single Smad1-Smad4 complex. Other potential pairings are separated as much as 60 bp but it is not known whether such longer distances can be spanned by a Smad1-Smad4 complex, indeed binding of native Smad1-Smad4 complexes to any of these bipartite elements has yet to be reported. Here we report that a complex of the homologous Drosophila Smad proteins, Mad and Medea, is capable of concerted binding to GC-rich and SBE sites separated by as much as 20 bp. The wider the separation, the more severely binding affinity was reduced by shortening of the linker region that tethers the DNA binding domain of Medea. In contrast, length of the Mad linker did not affect the allowed distance between paired sites, rather it contributes specifically to Mad contact with the GC-rich site. Finally, we show that Smad1 and Smad4 can participate in binding to bipartite sites.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory of Genetics, University of Wisconsin, 425G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
28
|
Reeves GT, Muratov CB, Schüpbach T, Shvartsman SY. Quantitative Models of Developmental Pattern Formation. Dev Cell 2006; 11:289-300. [PMID: 16950121 DOI: 10.1016/j.devcel.2006.08.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Pattern formation in developing organisms can be regulated at a variety of levels, from gene sequence to anatomy. At this level of complexity, mechanistic models of development become essential for integrating data, guiding future experiments, and predicting the effects of genetic and physical perturbations. However, the formulation and analysis of quantitative models of development are limited by high levels of uncertainty in experimental measurements, a large number of both known and unknown system components, and the multiscale nature of development. At the same time, an expanding arsenal of experimental tools can constrain models and directly test their predictions, making the modeling efforts not only necessary, but feasible. Using a number of problems in fruit fly development, we discuss how models can be used to test the feasibility of proposed patterning mechanisms and characterize their systems-level properties.
Collapse
Affiliation(s)
- Gregory T Reeves
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
29
|
Cordier F, Hartmann B, Rogowski M, Affolter M, Grzesiek S. DNA Recognition by the Brinker Repressor – An Extreme Case of Coupling Between Binding and Folding. J Mol Biol 2006; 361:659-72. [PMID: 16876822 DOI: 10.1016/j.jmb.2006.06.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022]
Abstract
The Brinker (Brk) nuclear repressor is a major element of the Drosophila Decapentaplegic morphogen signaling pathway. Its N-terminal part has weak homology to the Antennapedia homeodomain and binds to GC-rich DNA sequences. We have investigated the conformation and dynamics of the N-terminal 101 amino acid residues of Brk in the absence and in the presence of cognate DNA by solution NMR spectroscopy. In the absence of DNA, Brk is unfolded and highly flexible throughout the entire backbone. Addition of cognate DNA induces the formation of a well-folded structure for residues R46 to R95. This structure consists of four helices forming a helix-turn-helix motif that differs from homeodomains, but has similarities to the Tc3 transposase, the Pax-6 Paired domain, and the human centromere-binding protein. The GC-rich DNA recognition can be explained by specific major groove hydrogen bonds from the N-terminal end of helix alpha3. The transition from a highly flexible, completely unfolded conformation in the absence of DNA to a well-formed structure in the complex presents a very extreme case of the "coupling of binding and folding" phenomenon.
Collapse
Affiliation(s)
- Florence Cordier
- Division of Structural Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|