1
|
Sankar S, Jayabalan M, Venkatesh S, Ibrahim M. Effect of hyperglycemia on tbx5a and nppa gene expression and its correlation to structural and functional changes in developing zebrafish heart. Cell Biol Int 2022; 46:2173-2184. [PMID: 36069519 DOI: 10.1002/cbin.11901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
The objective of the current study is to analyze the effects of gestational diabetes on structural and functional changes in correlation with these two essential regulators of developing hearts in vivo using zebrafish embryos. We employed fertilized zebrafish embryos exposed to a hyperglycemic condition of 25 mM glucose for 96 h postfertilization. The embryos were subjected to various structural and functional analyses in a time-course manner. The data showed that exposure to high glucose significantly affected the embryo's size, heart length, heart rate, and looping of the heart compared to the control. Further, we observed an increased incidence of ventricular standstill and valvular regurgitation with a marked reduction of peripheral blood flow in the high glucose-exposed group compared to the control. In addition, the histological data showed that the high-glucose exposure markedly reduced the thickness of the wall and the number of cardiomyocytes in both atrium and ventricles. We also observed striking alterations in the pericardium like edema, increase in diameter with thinning of the wall compared to the control group. Interestingly, the expression of tbx5a and nppa was increased in the early development and found to be repressed in the later stage of development in the hyperglycemic group compared to the control. In conclusion, the developing heart is more susceptible to hyperglycemia in the womb, thereby showing various developmental defects possibly by altering the expression of crucial gene regulators such as tbx5a and nppa.
Collapse
Affiliation(s)
- Suruthi Sankar
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Monisha Jayabalan
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sundararajan Venkatesh
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Muhammed Ibrahim
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos. Sci Rep 2022; 12:13065. [PMID: 35906287 PMCID: PMC9338088 DOI: 10.1038/s41598-022-17127-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laurita Klimkaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA.
| |
Collapse
|
3
|
Reuter MS, Chaturvedi RR, Jobling RK, Pellecchia G, Hamdan O, Sung WW, Nalpathamkalam T, Attaluri P, Silversides CK, Wald RM, Marshall CR, Williams S, Keavney BD, Thiruvahindrapuram B, Scherer SW, Bassett AS. Clinical Genetic Risk Variants Inform a Functional Protein Interaction Network for Tetralogy of Fallot. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003410. [PMID: 34328347 PMCID: PMC8373675 DOI: 10.1161/circgen.121.003410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetralogy of Fallot (TOF)-the most common cyanotic heart defect in newborns-has evidence of multiple genetic contributing factors. Identifying variants that are clinically relevant is essential to understand patient-specific disease susceptibility and outcomes and could contribute to delineating pathomechanisms. METHODS Using a clinically driven strategy, we reanalyzed exome sequencing data from 811 probands with TOF, to identify rare loss-of-function and other likely pathogenic variants in genes associated with congenital heart disease. RESULTS We confirmed a major contribution of likely pathogenic variants in FLT4 (VEGFR3 [vascular endothelial growth factor receptor 3]; n=14) and NOTCH1 (n=10) and identified 1 to 3 variants in each of 21 other genes, including ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, RASA1, SMAD2, and TBX1. In addition, multiple loss-of-function variants provided support for 3 emerging congenital heart disease/TOF candidate genes: KDR (n=4), IQGAP1 (n=3), and GDF1 (n=8). In total, these variants were identified in 63 probands (7.8%). Using the 26 composite genes in a STRING protein interaction enrichment analysis revealed a biologically relevant network (P=3.3×10-16), with VEGFR2 (vascular endothelial growth factor receptor 2; KDR) and NOTCH1 (neurogenic locus notch homolog protein 1) representing central nodes. Variants associated with arrhythmias/sudden death and heart failure indicated factors that could influence long-term outcomes. CONCLUSIONS The results are relevant to precision medicine for TOF. They suggest considerable clinical yield from genome-wide sequencing, with further evidence for KDR (VEGFR2) as a congenital heart disease/TOF gene and for VEGF (vascular endothelial growth factor) and Notch signaling as mechanisms in human disease. Harnessing the genetic heterogeneity of single gene defects could inform etiopathogenesis and help prioritize novel candidate genes for TOF.
Collapse
Affiliation(s)
- Miriam S. Reuter
- CGEn, Univ Health Network, Toronto, ON, Canada
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Program in Genetics & Genome Biology, Univ Health Network, Toronto, ON, Canada
| | - Rajiv R. Chaturvedi
- Labatt Family Heart Ctr, Univ Health Network, Toronto, ON, Canada
- Ontario Fetal Ctr, Mt Sinai Hospital, Univ Health Network, Toronto, ON, Canada
- Ted Rogers Ctr for Heart Rsrch, Cardiac Genome Clinic, Univ Health Network, Toronto, ON, Canada
| | - Rebekah K. Jobling
- Ted Rogers Ctr for Heart Rsrch, Cardiac Genome Clinic, Univ Health Network, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Univ Health Network, Toronto, ON, Canada
- Genome Diagnostics, Dept of Paediatric Laboratory Medicine, The Hospital for Sick Children, Univ Health Network, Toronto, ON, Canada
| | | | - Omar Hamdan
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
| | - Wilson W.L. Sung
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
| | | | - Pratyusha Attaluri
- Medical Genomics Program, Dept of Molecular Genetics, Univ Health Network, Toronto, ON, Canada
| | - Candice K. Silversides
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
| | - Rachel M. Wald
- Labatt Family Heart Ctr, Univ Health Network, Toronto, ON, Canada
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
| | - Christian R. Marshall
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Genome Diagnostics, Dept of Paediatric Laboratory Medicine, The Hospital for Sick Children, Univ Health Network, Toronto, ON, Canada
- Laboratory Medicine & Pathobiology, Univ Health Network, Toronto, ON, Canada
| | - Simon Williams
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine & Health, The Univ of Manchester, Manchester, UK
- Manchester Univ NHS Foundation Trust, Manchester Academic Health Science Ctr, Manchester, UK
| | - Bernard D. Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine & Health, The Univ of Manchester, Manchester, UK
- Manchester Univ NHS Foundation Trust, Manchester Academic Health Science Ctr, Manchester, UK
| | | | - Stephen W. Scherer
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Program in Genetics & Genome Biology, Univ Health Network, Toronto, ON, Canada
- Dept of Molecular Genetics, Univ Health Network, Toronto, ON, Canada
- McLaughlin Ctr, Univ Health Network, Toronto, ON, Canada
| | - Anne S. Bassett
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
- Clinical Genetics Research Program, Ctr for Addiction & Mental Health, Toronto, ON, Canada
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Dept of Psychiatry & Toronto General Rsrch Inst, Univ Health Network, Toronto, ON, Canada
- Dept of Psychiatry, Univ of Toronto, Univ Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
5
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
6
|
Zhuang S, Fu Y, Li J, Li M, Hu X, Zhu J, Tong M. MicroRNA-375 overexpression disrupts cardiac development of Zebrafish (Danio rerio) by targeting notch2. PROTOPLASMA 2020; 257:1309-1318. [PMID: 32468186 DOI: 10.1007/s00709-020-01490-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs are small noncoding RNAs that are important for proper cardiac development. In our previous study of fetuses with ventricular septal defects, we discovered that microRNA-375 (miR-375) is obviously upregulated compared with that in healthy controls. Our study also confirmed that miR-375 is crucial for cardiomyocyte differentiation. This research mainly focused on the biological significance and mechanism of miR-375 using a zebrafish model. We injected zebrafish embryos with 1-2 nl of a miR-375 mimic at various concentrations (0/2/4/8 μM) or with negative control. The deformation and mortality rates were separately assessed. The different expression levels of miR-375 and related genes were examined by qRT-PCR, and luciferase assays and in situ hybridization were used to clarify the mechanism of miR-375 during embryonic development. Overexpression of miR-375 disrupted the cardiac development of zebrafish embryos. Disruption of miR-375 led to a decreased heart rate, pericardial edema, and abnormal cardiac looping. Various genes involved in cardiac development were downregulated due to the overexpression of miR-375. Moreover, the NOTCH signaling pathway was affected, and the luciferase reporter gene assays confirmed notch2, which was predicted by bioinformatics analysis, as the target gene of miR-375. Our findings demonstrated that the overexpression of miR-375 is detrimental to embryonic development, including cardiac development, and can partially simulate a multisystemic disorder. MiR-375 has an important role during cardiac morphogenesis of zebrafish embryos by targeting notch2, indicating its potential as a diagnostic marker.
Collapse
Affiliation(s)
- Sisi Zhuang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Yanrong Fu
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jingyun Li
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Mengmeng Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Xiaoshan Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Jingai Zhu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| |
Collapse
|
7
|
Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque G, Eveleigh R, Dunwoodie SL, Winlaw DS, Bhattacharya S, Breckpot J, Devriendt K, Gewillig M, Brook JD, Setchfield KJ, Bu'Lock FA, O'Sullivan J, Stuart G, Bezzina CR, Mulder BJM, Postma AV, Bentham JR, Baron M, Bhaskar SS, Black GC, Newman WG, Hentges KE, Lathrop GM, Santibanez-Koref M, Keavney BD. Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot. Circ Res 2019; 124:553-563. [PMID: 30582441 DOI: 10.1161/circresaha.118.313250] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. OBJECTIVE We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. METHODS AND RESULTS Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%-6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%-3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. CONCLUSIONS The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.
Collapse
Affiliation(s)
- Donna J Page
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Matthieu J Miossec
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.).,Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andrés Bello, Santiago, Chile (M.J.M.)
| | - Simon G Williams
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Richard M Monaghan
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Elisavet Fotiou
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.)
| | | | - Ana Topf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.)
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, Montréal, QC, Canada (M.B.).,McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Guillaume Bourque
- McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Robert Eveleigh
- McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Sally L Dunwoodie
- Chain Reaction Program in Congenital Heart Disease Research, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia (S.L.D.).,Faculties of Medicine and Science, University of New South Wales, Sydney (S.L.D.).,Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW (S.L.D.)
| | - David S Winlaw
- School of Child and Adolescent Health, Sydney Medical School, University of Sydney (D.S.W.).,Victor Chang Cardiac Research Institute, NSW, Australia (D.S.W.).,RDM Cardiovascular Medicine, Wellcome Centre for Human Genetics, University of Oxford (D.S.W., S.B.)
| | - Shoumo Bhattacharya
- RDM Cardiovascular Medicine, Wellcome Centre for Human Genetics, University of Oxford (D.S.W., S.B.).,Center for Human Genetics, Catholic University Leuven, Belgium (S.B., J.B., K.D.)
| | - Jeroen Breckpot
- Center for Human Genetics, Catholic University Leuven, Belgium (S.B., J.B., K.D.).,Pediatric and Congenital Cardiology, UZ Leuven (J.B., M.G.)
| | - Koenraad Devriendt
- Center for Human Genetics, Catholic University Leuven, Belgium (S.B., J.B., K.D.)
| | - Marc Gewillig
- Pediatric and Congenital Cardiology, UZ Leuven (J.B., M.G.)
| | - J David Brook
- School of Life Sciences, University of Nottingham, Queen's Medical Centre (J.D.B., K.J.S.)
| | - Kerry J Setchfield
- School of Life Sciences, University of Nottingham, Queen's Medical Centre (J.D.B., K.J.S.)
| | - Frances A Bu'Lock
- Congenital and Paediatric Cardiology, East Midlands Congenital Heart Centre and University of Leicester, Glenfield Hospital (F.A.B.)
| | - John O'Sullivan
- Adult Congenital and Paediatric Cardiac Unit, Freeman Hospital, Newcastle upon Tyne (J.O.)
| | - Graham Stuart
- University Hospitals Bristol NHS Foundation Trust, Bristol (G.S.)
| | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology (C.R.B.), Academic Medical Center, Amsterdam, the Netherlands
| | - Barbara J M Mulder
- Department of Medical Biology (B.J.M.M.), Academic Medical Center, Amsterdam, the Netherlands
| | - Alex V Postma
- Department of Clinical Genetics (A.V.P.), Academic Medical Center, Amsterdam, the Netherlands
| | - James R Bentham
- Department of Paediatric Cardiology, Yorkshire Heart Centre, Leeds (J.R.B.)
| | - Martin Baron
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester (M.B.)
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford, Manchester (S.S.B., G.C.B.)
| | - Graeme C Black
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford, Manchester (S.S.B., G.C.B.)
| | - William G Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford (W.G.N.); and Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | | | - G Mark Lathrop
- McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.)
| | - Bernard D Keavney
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| |
Collapse
|
8
|
Yang Y, Li B, Zhang X, Zhao Q, Lou X. The zinc finger protein Zfpm1 modulates ventricular trabeculation through Neuregulin-ErbB signalling. Dev Biol 2019; 446:142-150. [DOI: 10.1016/j.ydbio.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/26/2018] [Accepted: 01/01/2019] [Indexed: 01/22/2023]
|
9
|
Haploinsufficiency for ANKRD11-flanking genes makes the difference between KBG and 16q24.3 microdeletion syndromes: 12 new cases. Eur J Hum Genet 2017; 25:694-701. [PMID: 28422132 PMCID: PMC5533198 DOI: 10.1038/ejhg.2017.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
16q24 deletion involving the ANKRD11 gene, ranging from 137 kb to 2 Mb, have been associated with a microdeletion syndrome characterized by variable cognitive impairment, autism spectrum disorder, facial dysmorphisms with dental anomalies, brain abnormalities essentially affecting the corpus callosum and short stature. On the other hand, patients carrying either deletions encompassing solely ANKRD11 or its loss-of-function variants were reported in association with the KBG syndrome, characterized by a very similar phenotype, including mild-to-moderate intellectual disability, short stature and macrodontia of upper incisors, with inter and intrafamilial variability. To assess whether the haploinsufficiency of ANKRD11-flanking genes, such as ZFPM1, CDH15 and ZNF778, contributed to either the severity of the neurological impairment or was associated with other clinical features, we collected 12 new cases with a 16q24.2q24.3 deletion (de novo in 11 cases), ranging from 343 kb to 2.3 Mb. In 11 of them, the deletion involved the ANKRD11 gene, whereas in 1 case only flanking genes upstream to it were deleted. By comparing the clinical and genetic features of our patients with those previously reported, we show that the severity of the neurological phenotype and the frequency of congenital heart defects characterize the deletions that, besides ANKRD11, contain ZFPM1, CDH15 and ZNF778 as well. Moreover, the presence of thrombocytopenia and astigmatism should be taken into account to distinguish between 16q24 microdeletion syndrome and KBG syndrome. The single patient not deleted for ANKRD11, whose phenotype is characterized by milder psychomotor delay, cardiac congenital malformation, thrombocytopenia and astigmatism, confirms all this data.
Collapse
|
10
|
Place ES, Smith JC. Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes. PLoS One 2017; 12:e0171143. [PMID: 28182631 PMCID: PMC5300237 DOI: 10.1371/journal.pone.0171143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Atoh8 is a bHLH transcription factor expressed in pancreas, skeletal muscle, the nervous system, and cardiovascular tissues during embryological development. Although it has been implicated in the regulation of pancreatic and endothelial cell differentiation, the phenotypic consequences of Atoh8 loss are uncertain. Conclusions from knockout studies in the mouse differ widely depending on the targeting strategy used, while atoh8 knockdown by interfering morpholino oligonucleotides (morpholinos) in zebrafish has led to a range of developmental defects. This study characterised zebrafish embryos homozygous for atoh8sa1465, a loss-of-function allele of atoh8, in order to provide genetic evidence for the developmental role of Atoh8 in this species. Embryos homozygous for atoh8sa1465 present normal body morphology, swimbladder inflation, and heart looping, and survive to adulthood. These embryos do not develop pericardial oedema by 72 hpf and are not sensitised to the loss of Fog1 protein, suggesting that this previously described abnormality is not a specific phenotype. Vascular patterning and primitive haematopoiesis are unaffected in atoh8sa1465/sa1465 mutant embryos. Together, the data suggest that Atoh8 is dispensible for zebrafish development under standard laboratory conditions.
Collapse
Affiliation(s)
- Elsie S. Place
- Developmental Biology Laboratory, Francis Crick Institute, London, United Kingdom
| | - James C. Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
den Hartogh SC, Wolstencroft K, Mummery CL, Passier R. A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors. Sci Rep 2016; 6:19386. [PMID: 26783251 PMCID: PMC4726039 DOI: 10.1038/srep19386] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 01/03/2023] Open
Abstract
In vitro cardiac differentiation of human pluripotent stem cells (hPSCs) closely recapitulates in vivo embryonic heart development, and therefore, provides an excellent model to study human cardiac development. We recently generated the dual cardiac fluorescent reporter MESP1mCherry/wNKX2-5eGFP/w line in human embryonic stem cells (hESCs), allowing the visualization of pre-cardiac MESP1+ mesoderm and their further commitment towards the cardiac lineage, marked by activation of the cardiac transcription factor NKX2-5. Here, we performed a comprehensive whole genome based transcriptome analysis of MESP1-mCherry derived cardiac-committed cells. In addition to previously described cardiac-inducing signalling pathways, we identified novel transcriptional and signalling networks indicated by transient activation and interactive network analysis. Furthermore, we found a highly dynamic regulation of extracellular matrix components, suggesting the importance to create a versatile niche, adjusting to various stages of cardiac differentiation. Finally, we identified cell surface markers for cardiac progenitors, such as the Leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4), belonging to the same subfamily of LGR5, and LGR6, established tissue/cancer stem cells markers. We provide a comprehensive gene expression analysis of cardiac derivatives from pre-cardiac MESP1-progenitors that will contribute to a better understanding of the key regulators, pathways and markers involved in human cardiac differentiation and development.
Collapse
Affiliation(s)
- Sabine C den Hartogh
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Katherine Wolstencroft
- Leiden Institute of Advanced Computer Science Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Applied Stem cell Technologies. MIRA Institute for Biomedical Technology and Technical Medicine. University of Twente, P.O.Box 217, Enschede, The Netherlands
| |
Collapse
|
12
|
Rawnsley DR, Xiao J, Lee JS, Liu X, Mericko-Ishizuka P, Kumar V, He J, Basu A, Lu M, Lynn FC, Pack M, Gasa R, Kahn ML. The transcription factor Atonal homolog 8 regulates Gata4 and Friend of Gata-2 during vertebrate development. J Biol Chem 2013; 288:24429-40. [PMID: 23836893 DOI: 10.1074/jbc.m113.463083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GATA and Friend of GATA (FOG) form a transcriptional complex that plays a key role in cardiovascular development in both fish and mammals. In the present study we demonstrate that the basic helix-loop-helix transcription factor Atonal homolog 8 (Atoh8) is required for development of the heart in fish but not in mice. Genetic studies reveal that Atoh8 interacts specifically with Gata4 and Fog1 during development of the heart and swim bladder in the fish. Biochemical studies reveal that ATOH8, GATA4, and FOG2 associate in a single complex in vitro. In contrast to fish, ATOH8-deficient mice exhibit normal cardiac development and loss of ATOH8 does not alter cardiac development in Gata4(+/-) mice. This species difference in the role of ATOH8 is explained in part by LacZ and GFP reporter alleles that reveal restriction of Atoh8 expression to atrial but not ventricular myocardium in the mouse. Our findings identify ATOH8 as a novel regulator of GATA-FOG function that is required for cardiac development in the fish but not the mouse. Whether ATOH8 modulates GATA-FOG function at other sites or in more subtle ways in mammals is not yet known.
Collapse
Affiliation(s)
- David R Rawnsley
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chlon TM, Crispino JD. Combinatorial regulation of tissue specification by GATA and FOG factors. Development 2012; 139:3905-16. [PMID: 23048181 DOI: 10.1242/dev.080440] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of complex organisms requires the formation of diverse cell types from common stem and progenitor cells. GATA family transcriptional regulators and their dedicated co-factors, termed Friend of GATA (FOG) proteins, control cell fate and differentiation in multiple tissue types from Drosophila to man. FOGs can both facilitate and antagonize GATA factor transcriptional regulation depending on the factor, cell, and even the specific gene target. In this review, we highlight recent studies that have elucidated mechanisms by which FOGs regulate GATA factor function and discuss how these factors use these diverse modes of gene regulation to control cell lineage specification throughout metazoans.
Collapse
Affiliation(s)
- Timothy M Chlon
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
14
|
Amigo JD, Ackermann GE, Cope JJ, Yu M, Cooney JD, Ma D, Langer NB, Shafizadeh E, Shaw GC, Horsely W, Trede NS, Davidson AJ, Barut BA, Zhou Y, Wojiski SA, Traver D, Moran TB, Kourkoulis G, Hsu K, Kanki JP, Shah DI, Lin HF, Handin RI, Cantor AB, Paw BH. The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish. Blood 2009; 114:4654-63. [PMID: 19729519 PMCID: PMC2780302 DOI: 10.1182/blood-2008-12-189910] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 08/06/2009] [Indexed: 01/24/2023] Open
Abstract
The nuclear protein FOG-1 binds transcription factor GATA-1 to facilitate erythroid and megakaryocytic maturation. However, little is known about the function of FOG-1 during myeloid and lymphoid development or how FOG-1 expression is regulated in any tissue. We used in situ hybridization, gain- and loss-of-function studies in zebrafish to address these problems. Zebrafish FOG-1 is expressed in early hematopoietic cells, as well as heart, viscera, and paraspinal neurons, suggesting that it has multifaceted functions in organogenesis. We found that FOG-1 is dispensable for endoderm specification but is required for endoderm patterning affecting the expression of late-stage T-cell markers, independent of GATA-1. The suppression of FOG-1, in the presence of normal GATA-1 levels, induces severe anemia and thrombocytopenia and expands myeloid-progenitor cells, indicating that FOG-1 is required during erythroid/myeloid commitment. To functionally interrogate whether GATA-1 regulates FOG-1 in vivo, we used bioinformatics combined with transgenic assays. Thus, we identified 2 cis-regulatory elements that control the tissue-specific gene expression of FOG-1. One of these enhancers contains functional GATA-binding sites, indicating the potential for a regulatory loop in which GATA factors control the expression of their partner protein FOG-1.
Collapse
Affiliation(s)
- Julio D Amigo
- Department of Medicine, Division of Hematology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Van't Padje S, Chaudhry B, Severijnen LA, van der Linde HC, Mientjes EJ, Oostra BA, Willemsen R. Reduction in fragile X related 1 protein causes cardiomyopathy and muscular dystrophy in zebrafish. ACTA ACUST UNITED AC 2009; 212:2564-70. [PMID: 19648401 DOI: 10.1242/jeb.032532] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lack of the FMR1 gene product causes fragile X syndrome, the commonest inherited cause of mental impairment. We know little of the roles that fragile X related (FXR) gene family members (FMR1, FXR2 and FXR1) play during embryonic development. Although all are expressed in the brain and testis, FXR1 is the principal member found in striated and cardiac muscle. The Fxr1 knockout mice display a striated muscle phenotype but it is not known why they die shortly after birth; however, a cardiac cause is possible. The zebrafish is an ideal model to investigate the role of fxr1 during development of the heart. We have carried out morpholino knockdown of fxr1 and have demonstrated abnormalities of striated muscle development and abnormal development of the zebrafish heart, including failure of looping and snapping of the atrium from its venous pole. In addition, we have measured cardiac function using high-speed video microscopy and demonstrated a significant reduction in cardiac function. This cardiac phenotype has not been previously described and suggests that fxr1 is essential for normal cardiac form and function.
Collapse
Affiliation(s)
- Sandra Van't Padje
- CBG-Department of Clinical Genetics, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev Dyn 2009; 238:1836-50. [PMID: 19504456 DOI: 10.1002/dvdy.21990] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signaling pathways controlling vasculogenesis, angiogenesis, and myelopoiesis are still poorly understood, in part because not all genes important for vasculature or myeloid cell formation have been characterized. To identify novel potential regulators of vasculature and myeloid cell formation we performed microarray analysis of zebrafish embryos that overexpress Ets1-related protein (Etsrp/Etv2/ER71), sufficient to induce vasculogenesis and myelopoiesis (Sumanas and Lin [2006] Development 121:3141-3150; Lee [2008] Cell Stem Cell 2:497-507; Sumanas et al. [2008] Blood 111:4500-4510). We performed sequence homology and expression analysis for up-regulated genes that were novel or previously unassociated with the zebrafish vasculature formation. Angiotensin II type 2 receptor (agtr2), src homology 2 domain containing E (she), mannose receptor C1 (mrc1), endothelial cell-specific adhesion molecule (esam), yes-related kinase (yrk/fyn), zinc finger protein, multitype 2b (zfpm2b/fog2b), and stabilin 2 (stab2) were specifically expressed in vascular endothelial cells during early development while keratin18 expression was localized to the myeloid cells. Identification of vasculature and myeloid-specific genes will be important for dissecting molecular mechanisms of vasculogenesis/angiogenesis and myelopoiesis.
Collapse
Affiliation(s)
- Kuan Shen Wong
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
17
|
Kim GH, Samant SA, Earley JU, Svensson EC. Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a. PLoS One 2009; 4:e6161. [PMID: 19582148 PMCID: PMC2701631 DOI: 10.1371/journal.pone.0006161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/07/2009] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3' untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3' untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3' untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development.
Collapse
Affiliation(s)
- Gene H. Kim
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Sadhana A. Samant
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Judy U. Earley
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Eric C. Svensson
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Developmental Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Takizawa F, Mizunaga Y, Araki K, Moritomo T, Ototake M, Nakanishi T. GATA3 mRNA in ginbuna crucian carp (Carassius auratus langsdorfii): cDNA cloning, splice variants and expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:898-907. [PMID: 18313140 DOI: 10.1016/j.dci.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 05/26/2023]
Abstract
GATA3, a transcriptional activator, plays a critical role in the development of T-cells and differentiation to T helper type 2 cells. To date, no information is available on the role of GATA3 in the teleost immune system. We identified full-length cDNA and alternatively spliced variants of ginbuna crucian carp GATA3 (gbGATA3). The gbGATA3 gene is transcribed into multiple splice variants lacking either one or both zinc finger domains, although the sequences of both domains are fully conserved between ginbuna and other vertebrates. We found that alternative splice site and stop codon in gbGATA3 intron 3, located between exons that separately encode the two zinc finger domains, are conserved among teleosts, suggesting that teleost GATA3 gene can be translated into multiple isoforms. RT-PCR analysis revealed that the gbGATA3 is strongly expressed in the brain, thymus and gill of unstimulated fish. Moreover, gbGATA3 expression was detected in surface-IgM-negative lymphocytes among kidney cells sorted by FACS. Real-time PCR demonstrated that expression levels of full-length gbGATA3 and the splice variants differed with tissue type, but full length was always the predominantly expressed form. These results suggest that gbGATA3, including its splice variants, is involved in teleost T-cell function.
Collapse
Affiliation(s)
- Fumio Takizawa
- Laboratory of Fish Pathology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Kim KH, Antkiewicz DS, Yan L, Eliceiri KW, Heideman W, Peterson RE, Lee Y. Lrrc10 is required for early heart development and function in zebrafish. Dev Biol 2007; 308:494-506. [PMID: 17601532 PMCID: PMC2048587 DOI: 10.1016/j.ydbio.2007.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/15/2007] [Accepted: 06/06/2007] [Indexed: 11/15/2022]
Abstract
Leucine-rich Repeat Containing protein 10 (LRRC10) has recently been identified as a cardiac-specific factor in mice. However, the function of this factor remains to be elucidated. In this study, we investigated the developmental roles of Lrrc10 using zebrafish as an animal model. Knockdown of Lrrc10 in zebrafish embryos (morphants) using morpholinos caused severe cardiac morphogenic defects including a cardiac looping failure accompanied by a large pericardial edema, and embryonic lethality between day 6 and 7 post fertilization. The Lrrc10 morphants exhibited cardiac functional defects as evidenced by a decrease in ejection fraction and cardiac output. Further investigations into the underlying mechanisms of the cardiac defects revealed that the number of cardiomyocyte was reduced in the morphants. Expression of two cardiac genes was deregulated in the morphants including an increase in atrial natriuretic factor, a hallmark for cardiac hypertrophy and failure, and a decrease in cardiac myosin light chain 2, an essential protein for cardiac contractility in zebrafish. Moreover, a reduced fluorescence intensity from NADH in the morphant heart was observed in live zebrafish embryos as compared to control. Taken together, the present study demonstrates that Lrrc10 is necessary for normal cardiac development and cardiac function in zebrafish embryos, which will enhance our understanding of congenital heart defects and heart disease.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Anatomy, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Dagmara S. Antkiewicz
- Molecular and Environmental Toxicology Center, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Long Yan
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706, USA
| | - Warren Heideman
- Molecular and Environmental Toxicology Center, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard E. Peterson
- Molecular and Environmental Toxicology Center, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Youngsook Lee
- Department of Anatomy, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
20
|
Kim KH, Kim TG, Micales BK, Lyons GE, Lee Y. Dynamic expression patterns of leucine-rich repeat containing protein 10 in the heart. Dev Dyn 2007; 236:2225-34. [PMID: 17626279 PMCID: PMC2002521 DOI: 10.1002/dvdy.21225] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Leucine-rich repeat containing protein 10 (LRRC10) is a heart-specific factor whose function remains unknown. Examination of the intracellular location of the gene products is a critical step in determining the biological functions of the protein. Our expression analyses in mice indicate that LRRC10 is exclusively expressed from the precardiac region in early embryos to the adult heart. LRRC10 expression is markedly elevated upon birth, suggesting its role in the embryonic as well as adult hearts. Of interest, LRRC10 exhibits dynamic intracellular expression patterns in cardiomyocytes. Cardiomyocytes from embryos and newborns show diffuse cytoplasmic and nuclear staining of LRRC10. In contrast, striking striations are observed in adult cardiomyocytes, which are colocalized with the markers for the Z-line, sarcoplasmic reticulum (SR), and transverse (T)-tubule by double immunostaining. Further investigation by electron micrographs places LRRC10 in a diad region where the SR interacts with the T-tubule that locates along the Z-line.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Anatomy, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Tokusumi T, Russell M, Gajewski K, Fossett N, Schulz RA. U-shaped protein domains required for repression of cardiac gene expression in Drosophila. Differentiation 2007; 75:166-74. [PMID: 17316386 DOI: 10.1111/j.1432-0436.2006.00120.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U-shaped is a zinc finger protein that functions predominantly as a negative transcriptional regulator of cell fate determination during Drosophila development. In the early stages of dorsal vessel formation, the protein acts to control cardioblast specification, working as a negative attenuator of the cardiogenic GATA factor Pannier. Pannier and the homeodomain protein Tinman normally work together to specify heart cells and activate cardioblast gene expression. One target of this positive regulation is a heart enhancer of the D-mef2 gene and U-shaped has been shown to antagonize enhancer activation by Pannier and Tinman. We have mapped protein domains of U-shaped required for its repression of cardioblast gene expression. Such studies showed GATA factor interacting zinc fingers of U-shaped are required for enhancer repression, as well as three small motifs that are likely needed for co-factor binding and/or protein modification. These analyses have also allowed for the definition of a 253 amino acid interval of U-shaped that is essential for its nuclear localization. Together, these findings provide molecular insights into the function of U-shaped as a negative regulator of heart development in Drosophila.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biochemistry and Molecular Biology, Program in Genes & Development, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Ribeiro I, Kawakami Y, Büscher D, Raya Á, Rodríguez-León J, Morita M, Rodríguez Esteban C, Izpisúa Belmonte JC. Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One 2007; 2:e398. [PMID: 17460765 PMCID: PMC1851989 DOI: 10.1371/journal.pone.0000398] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/23/2007] [Indexed: 01/12/2023] Open
Abstract
Background The heart forms from a linear tube that is subject to complex remodeling during embryonic development. Hallmarks of this remodeling are the looping of the heart tube and the regionalization into chamber and non-chamber myocardium. Cardiomyocytes in the future chamber myocardium acquire different cellular and physiological characteristics through activation of a chamber-specific genetic program, which is in part mediated by T-box genes. Methodology/Principal Finding We characterize two new zebrafish T-box transcription factors, tbx3b and tbx2a, and analyze their role during the development of the atrioventricular canal. Loss- and gain-of-function analyses demonstrate that tbx3b and tbx2a are necessary to repress the chamber-genetic program in the non-chamber myocardium. We also show that tbx3b and tbx2a are required to control cell proliferation in the atrioventricular canal and that misregulation of cell proliferation in the heart tube influences looping. Furthermore, we characterize the heart phenotype of a novel Tbx3 mutation in mice and show that both the control of cell proliferation and the repression of chamber-specific genetic program in the non-chamber myocardium are conserved roles of Tbx3 in this species. Conclusions/Significance Taken together, our results uncover an evolutionarily conserved role of Tbx2/3 transcription factors during remodeling of the heart myocardium and highlight the importance of controlling cell proliferation as a driving force of morphogenesis.
Collapse
Affiliation(s)
- Inês Ribeiro
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yasuhiko Kawakami
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Dirk Büscher
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Ángel Raya
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | - Masanobu Morita
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Concepción Rodríguez Esteban
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Juan Carlos Izpisúa Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Dale RM, Remo BF, Svensson EC. An alternative transcript of the FOG-2 gene encodes a FOG-2 isoform lacking the FOG repression motif. Biochem Biophys Res Commun 2007; 357:683-7. [PMID: 17445768 PMCID: PMC1971242 DOI: 10.1016/j.bbrc.2007.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
The FOG family of transcriptional co-factors is composed of two members in mammals: FOG-1 and FOG-2. Both have been shown to bind to GATA factors and function as transcriptional co-repressors in specific cell and promoter contexts. We have previously defined a novel repression domain localized to the N-terminus of each FOG family member, the FOG repression motif, which is necessary for FOG-mediated transcriptional repression. In this report, we describe the identification and characterization of a novel isoform of FOG-2 lacking the FOG repression motif. In contrast to full-length FOG-2, this isoform is expressed predominately in the embryonic and adult heart. It can bind GATA4 avidly, but is unable to repress GATA4-mediated activation of cardiac-restricted gene promoters. Together, these results suggest that FOG-2 repressive activity may be modulated by the generation of isoforms of FOG-2 lacking the FOG repression motif.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6088, Chicago, IL 60637, USA
| | | | | |
Collapse
|
24
|
Wohlgemuth SL, Crawford BD, Pilgrim DB. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 2006; 303:483-92. [PMID: 17189627 DOI: 10.1016/j.ydbio.2006.11.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/30/2022]
Abstract
The assembly of myosin into higher order structures is dependent upon accessory factors that are often tissue-specific. UNC-45 acts as such a molecular chaperone for myosin in the nematode Caenorhabditis elegans, in both muscle and non-muscle contexts. Although vertebrates contain homologues of UNC-45, their requirement for muscle function has not been assayed. We identified a zebrafish gene, unc45b, similar to a mammalian unc-45 homologue, expressed exclusively in striated muscle tissue, including the somites, heart and craniofacial muscle. Morpholino-oligonucleotide-mediated knockdown of unc45b results in paralysis and cardiac dysfunction. This paralysis is correlated with a loss of myosin filaments in the sarcomeres of the trunk muscle. Morphants lack circulation, heart looping and display severe cardiac and yolk-sac edema and also demonstrate ventral displacement of several jaw cartilages. Overall, this confirms a role for unc45b in zebrafish motility consistent with a function in myosin thick filament assembly and stability and uncovers novel roles for this gene in the function and morphogenesis of the developing heart and jaw. These results suggest that Unc45b acts as a chaperone that aids in the folding of myosin isoforms required for skeletal, cranial and cardiac muscle contraction.
Collapse
Affiliation(s)
- Serene L Wohlgemuth
- Department of Biological Sciences, CW405, Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
25
|
Wang Y, Shupenko CC, Melo LF, Strauss PR. DNA repair protein involved in heart and blood development. Mol Cell Biol 2006; 26:9083-93. [PMID: 16966376 PMCID: PMC1636828 DOI: 10.1128/mcb.01216-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1, a key enzyme in repairing abasic sites in DNA, is an embryonic lethal in mice. We are examining its role in embryogenesis in zebra fish. Zebra fish contain two genomic copies (zfAPEX1a and zfAPEX1b) with identical coding sequences. zfAPEX1b lacks introns. Recombinant protein (ZAP1) is highly homologous with and has the same enzymatic properties as its human orthologue. ZAP1 is highly expressed throughout development. Embryos microinjected with morpholino oligonucleotide (MO) targeting the translation start site die at approximately the midblastula transition (MBT) without apoptosis. They are rescued with mRNA for human wild-type APEX1 but not for APEX1 encoding endonuclease-defective protein. Rescued embryos develop dysmorphic hearts, pericardial edema, few erythrocytes, small eyes, and abnormal notochords. Although the hearts in rescued embryos form defective loops ranging from no loop to one that is abnormally shaped, cardiac myosin (cmlc2) is present and contraction occurs. Embryos microinjected with MO targeting zfAPEX1a intron-exon junctions also pass the MBT with similar abnormalities. We conclude that AP endonuclease 1 is involved in both repairing DNA and regulating specific early stages of embryonic development.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Sanges R, Kalmar E, Claudiani P, D'Amato M, Muller F, Stupka E. Shuffling of cis-regulatory elements is a pervasive feature of the vertebrate lineage. Genome Biol 2006; 7:R56. [PMID: 16859531 PMCID: PMC1779573 DOI: 10.1186/gb-2006-7-7-r56] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 04/05/2006] [Accepted: 06/27/2006] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND All vertebrates share a remarkable degree of similarity in their development as well as in the basic functions of their cells. Despite this, attempts at unearthing genome-wide regulatory elements conserved throughout the vertebrate lineage using BLAST-like approaches have thus far detected noncoding conservation in only a few hundred genes, mostly associated with regulation of transcription and development. RESULTS We used a unique combination of tools to obtain regional global-local alignments of orthologous loci. This approach takes into account shuffling of regulatory regions that are likely to occur over evolutionary distances greater than those separating mammalian genomes. This approach revealed one order of magnitude more vertebrate conserved elements than was previously reported in over 2,000 genes, including a high number of genes found in the membrane and extracellular regions. Our analysis revealed that 72% of the elements identified have undergone shuffling. We tested the ability of the elements identified to enhance transcription in zebrafish embryos and compared their activity with a set of control fragments. We found that more than 80% of the elements tested were able to enhance transcription significantly, prevalently in a tissue-restricted manner corresponding to the expression domain of the neighboring gene. CONCLUSION Our work elucidates the importance of shuffling in the detection of cis-regulatory elements. It also elucidates how similarities across the vertebrate lineage, which go well beyond development, can be explained not only within the realm of coding genes but also in that of the sequences that ultimately govern their expression.
Collapse
Affiliation(s)
- Remo Sanges
- Telethon Institute of Genetics and Medicine, Via P. Castellino, 80131 Napoli, Italy
| | - Eva Kalmar
- Institute of Toxicology and Genetics, Forschungzenbrum, Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany
| | - Pamela Claudiani
- Telethon Institute of Genetics and Medicine, Via P. Castellino, 80131 Napoli, Italy
| | - Maria D'Amato
- Telethon Institute of Genetics and Medicine, Via P. Castellino, 80131 Napoli, Italy
| | - Ferenc Muller
- Institute of Toxicology and Genetics, Forschungzenbrum, Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany
| | - Elia Stupka
- Telethon Institute of Genetics and Medicine, Via P. Castellino, 80131 Napoli, Italy
| |
Collapse
|