1
|
Garige M, Walters E. Characterization of glutathione S-transferase enzymes in Dictyostelium discoideum suggests a functional role for the GSTA2 isozyme in cell proliferation and development. PLoS One 2021; 16:e0250704. [PMID: 33909675 PMCID: PMC8081208 DOI: 10.1371/journal.pone.0250704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
In this report, we extend our previous characterization of Dictyostelium discoideum glutathione S-transferase (DdGST) enzymes that are expressed in the eukaryotic model organism. Transcript profiling of gstA1-gstA5 (alpha class) genes in vegetative, log phase cells identified gstA2 and gstA3 with highest expression (6-7.5-fold, respectively) when compared to other gstA transcripts. Marked reductions in all gstA transcripts occurred under starvation conditions, with gstA2 and gstA3 exhibiting the largest decreases (-96% and -86.6%, respectively). When compared to their pre-starvation levels, there was also a 60 percent reduction in total GST activity. Glutathione (GSH) pull-down assay and mass spectroscopy detected three isozymes (DdGSTA1, DdGSTA2 and DdGSTA3) that were predominantly expressed in vegetative cells. Biochemical and kinetic comparisons between rDdGSTA2 and rDdGSTA3 shows higher activity of rDdGSTA2 to the CDNB (1-chloro-2,4-dinitrobenzene) substrate. RNAi-mediated knockdown of endogenous DdGSTA2 caused a 60 percent reduction in proliferation, delayed development, and altered morphogenesis of fruiting bodies, whereas overexpression of rDdGSTA2 enzyme had no effect. These findings corroborate previous studies that implicate a role for phase II GST enzymes in cell proliferation, homeostasis, and development in eukaryotic cells.
Collapse
Affiliation(s)
- Mamatha Garige
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Eric Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| |
Collapse
|
2
|
Rodogiannis K, Duong JT, Kovarik ML. Microfluidic single-cell analysis of oxidative stress in Dictyostelium discoideum. Analyst 2019; 143:3643-3650. [PMID: 29969508 DOI: 10.1039/c8an00752g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microfluidic chemical cytometry is a powerful technique for examining chemical contents of individual cells, but applications have focused on cells from multicellular organisms, especially mammals. We demonstrate the first use of microfluidic chemical cytometry to examine a unicellular organism, the social amoeba Dictyostelium discoideum. We used the reactive oxygen species indicator dichlorodihydrofluorescein diacetate to report on oxidative stress and controlled for variations in indicator loading and retention using carboxyfluorescein diacetate as an internal standard. After optimizing indicator concentration, we investigated the effect of peroxide treatment through single-cell measurements of 353 individual cells. The peak area ratio of dichlorofluorescein to carboxyfluorescein increased from 1.69 ± 0.89 for untreated cells to 5.19 ± 2.72 for cells treated with 40 mM hydrogen peroxide. Interestingly, the variance of the data also increased with oxidative stress. While preliminary, these results are consistent with the hypothesis that heterogeneous stress responses in unicellular organisms may be adaptive.
Collapse
Affiliation(s)
- Kathy Rodogiannis
- Department of Chemistry, Trinity College, 300 Summit St., Hartford, CT 06106, USA.
| | | | | |
Collapse
|
3
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
4
|
Lee HM, Seo JH, Kwak MK, Kang SO. Methylglyoxal upregulates Dictyostelium discoideum slug migration by triggering glutathione reductase and methylglyoxal reductase activity. Int J Biochem Cell Biol 2017; 90:81-92. [PMID: 28760625 DOI: 10.1016/j.biocel.2017.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/13/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Glutathione (GSH)-deprived Dictyostelium discoideum accumulates methylglyoxal (MG) and reactive oxygen species (ROS) during vegetative growth. However, the reciprocal effects of the production and regulation of these metabolites on differentiation and cell motility are unclear. Based on the inhibitory effects of γ-glutamylcysteine synthetase (gcsA) disruption and GSH reductase (gsr) overexpression on aggregation and culmination, respectively, we overexpressed GSH-related genes encoding superoxide dismutase (Sod2), catalase (CatA), and Gcs, in D. discoideum. Wild-type KAx3 and gcsA-overexpressing (gcsAOE) slugs maintained GSH levels at levels of approximately 2.1-fold less than the reference GSH synthetase-overexpressing mutant; their GSH levels did not correlate with slug migration ability. Through prolonged KAx3 migration by treatment with MG and H2O2, we found that MG increased after the mound stage in this strain, with a 2.6-fold increase compared to early developmental stages; in contrast, ROS were maintained at high levels throughout development. While the migration-defective sod2- and catA-overexpressing mutant slugs (sod2OE and catAOE) decreased ROS levels by 50% and 53%, respectively, these slugs showed moderately decreased MG levels (36.2±5.8 and 40.7±1.6nmolg-1 cells wet weight, P<0.05) compared to the parental strain (54.2±3.5nmolg-1). Importantly, defects in the migration of gcsAOE slugs decreased MG considerably (13.8±4.2nmolg-1, P<0.01) along with a slight decrease in ROS. In contrast to the increase observed in migrating sod2OE and catAOE slugs by treatment with MG and H2O2, the migration of gcsAOE slugs appeared unaffected. This behavior was caused by MG-triggered Gsr and NADPH-linked aldolase reductase activity, suggesting that GSH biosynthesis in gcsAOE slugs is specifically used for MG-scavenging activity. This is the first report showing that MG upregulates slug migration via MG-scavenging-mediated differentiation.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Hui Seo
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
5
|
Lee HM, Kim JS, Kang SO. Glutathione upregulates cAMP signalling via G protein alpha 2 during the development of Dictyostelium discoideum. FEBS Lett 2016; 590:4361-4371. [PMID: 27718249 DOI: 10.1002/1873-3468.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 11/06/2022]
Abstract
Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Ji-Sun Kim
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| |
Collapse
|
6
|
Glutathione S-transferase 4 is a putative DIF-binding protein that regulates the size of fruiting bodies in Dictyostelium discoideum. Biochem Biophys Rep 2016; 8:219-226. [PMID: 28955959 PMCID: PMC5613964 DOI: 10.1016/j.bbrep.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
In the development of the cellular slime mold Dictyostelium discoideum, two chlorinated compounds, the differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell differentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we here performed DIF-conjugated affinity gel chromatography and liquid chromatography-tandem mass spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout and overexpression mutants of gst4 (gst4- and gst4OE, respectively) formed fruiting bodies, but the fruiting bodies of gst4- cells were smaller than those of wild-type Ax2 cells, and those of gst4OE cells were larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum.
Collapse
Key Words
- Cellular slime mold
- DIF-1
- DIF-1, differentiation-inducing factor 1, 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one
- DIF-1-NH2, amino derivative of DIF-1, 6-amino-1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one
- DIF-2
- DIF-2, differentiation-inducing factor-2, 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)pentan-1-one
- Dictyostelium discoideum
- GSH, glutathione
- GST, glutathione S-transferase
- Glutathione S-transferase
- LC/MS/MS, liquid chromatography–mass-mass spectrometry (liquid chromatography–tandem mass spectrometry)
- THPH, 1-(2,4,6-trihydroxyphenyl)hexan-1-one
Collapse
|
7
|
Kwak MK, Lee MH, Park SJ, Shin SM, Liu R, Kang SO. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione. FEBS Lett 2016; 590:739-49. [PMID: 26898161 DOI: 10.1002/1873-3468.12102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation.
Collapse
Affiliation(s)
- Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Mun-Hyoung Lee
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Seong-Jun Park
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Sang-Min Shin
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Rui Liu
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| |
Collapse
|
8
|
Kim JS, Seo JH, Kang SO. Glutathione initiates the development of Dictyostelium discoideum through the regulation of YakA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:664-74. [PMID: 24373846 DOI: 10.1016/j.bbamcr.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023]
Abstract
Reduced glutathione (GSH) is an essential metabolite that performs multiple indispensable roles during the development of Dictyostelium. We show here that disruption of the gene (gcsA-) encoding y-glutamylcysteine synthetase, an essential enzyme in GSH biosynthesis, inhibited aggregation, and that this developmental defect was rescued by exogenous GSH, but not by other thiols or antioxidants. In GSH-depleted gcsA- cells, the expression ofa growth-stage-specific gene (cprD) was not inhibited, and we did not detect the expression of genes that encode proteins required for early development (cAMP receptor, carA/cAR1; adenylyl cyclase, acaA/ACA; and the catalytic subunit of protein kinase A, pkaC/PKA-C). The defects in gcsA cells were not restored by cAMP stimulation or by cAR1 expression. Further, the expression of yakA, which initiates development and induces the expression of PKA-C, ACA, and cAR1, was regulated by the intracellular concentration of GSH. Constitutive expression of YakA in gcsA- cells (YakA(OE)/gcsA-) rescued the defects in developmental initiation and the expression of early developmental genes in the absence of GSH. Taken together, these findings suggest that GSH plays an essential role in the transition from growth to development by modulating the expression of the genes encoding YakA as well as components thatact downstream in the YakA signaling pathway.
Collapse
|
9
|
Fu Z, Wang B, Wang S, Wu W, Wang Q, Chen Y, Kong S, Lu J, Tang Z, Ran H, Tu Z, He B, Zhang S, Chen Q, Jin W, Duan E, Wang H, Wang YL, Li L, Wang F, Gao S, Wang H. Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. Biol Reprod 2014; 90:52. [PMID: 24451987 DOI: 10.1095/biolreprod.113.115337] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Among nearly 100 mammalian species, implantation can be suspended at blastocyst stage for a certain time and reactivated under favorable conditions, a phenomenon known as embryonic diapause. Until now, the underlying molecular mechanism governing embryonic diapause and reactivation for implantation remained largely unknown. Here we conducted the first integral proteomic analysis of blastocysts from diapause to reactivation by using a physiologically relevant mouse delayed implantation model. More than 6000 dormant and reactivated blastocysts were used for the proteomic analysis. A total of 2255 proteins were detected. Various cellular and molecular processes, including protein translation, aerobic glycolysis, pentose phosphate pathway, purine nucleotide biosynthesis, glutathione metabolism, and chromatin organization were identified as differentially regulated. In particular, we demonstrated a remarkable activation of mitochondria in blastocysts upon reactivation from dormancy, highlighting their essential physiological significance. Moreover, the activities of the endosome-lysosome system were prominently enhanced in the mural trophectoderm of reactivated blastocysts, accompanied by active phagocytosis at the fetal-maternal interface, suggesting a critical role in promoting trophoblast invasion. Collectively, we provided an integral proteomic view upon the regulatory network of blastocyst reactivation from diapause, which will help to better interpret the nature of embryonic diapause and reactivation in wild animals and to identify molecular indicators for selecting blastocysts with high implantation competency.
Collapse
Affiliation(s)
- Zheng Fu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet Biol 2012; 49:114-22. [DOI: 10.1016/j.fgb.2011.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/29/2011] [Accepted: 12/12/2011] [Indexed: 11/20/2022]
|
11
|
Choi CH, Park SJ, Jeong SY, Yim HS, Kang SO. Methylglyoxal accumulation by glutathione depletion leads to cell cycle arrest inDictyostelium. Mol Microbiol 2008; 70:1293-304. [DOI: 10.1111/j.1365-2958.2008.06497.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
West CM, van der Wel H, Wang ZA. Prolyl 4-hydroxylase-1 mediates O2 signaling during development of Dictyostelium. Development 2007; 134:3349-58. [PMID: 17699611 DOI: 10.1242/dev.000893] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development in multicellular organisms is subject to both environmental and internal signals. In Dictyostelium, starvation induces amoebae to form migratory slugs that translocate from subterranean areas to exposed sites, where they culminate to form sessile fruiting bodies. Culmination, thought to be regulated by anterior tip cells, is selectively suppressed by mild hypoxia by a mechanism that can be partially overridden by another environmental signal, overhead light, or genetic activation of protein kinase A. Dictyostelium expresses, in all cells, an O2-dependent prolyl 4-hydroxylase (P4H1) required for O-glycosylation of Skp1, a subunit of E3SCF-Ub-ligases. P4H1-null cells differentiate the basic pre-stalk and pre-spore cell types but exhibit a selectively increased O2 requirement for culmination, from approximately 12% to near or above ambient (21%) levels. Overexpression of P4H1 reduces the O2 requirement to <5%. The requirement for P4H1 can be met by forced expression of the active enzyme in either pre-stalk (anterior) or pre-spore (posterior) cells, or replaced by protein kinase A activation or addition of small numbers of wild-type cells. P4H1-expressing cells accumulate at the anterior end, suggesting that P4H1 enables transcellular signaling by the tip. The evidence provides novel genetic support for the animal-derived O2-sensor model of prolyl 4-hydroxylase function, in an organism that lacks the canonical HIFalpha transcriptional factor subunit substrate target that is a feature of animal hypoxic signaling.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA.
| | | | | |
Collapse
|
13
|
Jeong SY, Choi CH, Kim JS, Park SJ, Kang SO. Thioredoxin reductase is required for growth and regulates entry into culmination of Dictyostelium discoideum. Mol Microbiol 2006; 61:1443-56. [PMID: 16899077 DOI: 10.1111/j.1365-2958.2006.05329.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thioredoxin system, consisting of thioredoxin, thioredoxin reductase and NADPH, has been well established to be critical for the redox regulation of protein function and signalling. To investigate the role of thioredoxin reductase (Trr) in Dictyostelium discoideum, we generated mutant cells that underexpress or overexpress Trr. Trr-underexpressing cells exhibited severe defects in axenic growth and development. Trr-overexpressing (TrrOE) cells formed very tiny plaques on a bacterial lawn and had a lower rate of bacterial uptake. When developed in the dark, TrrOE cells exhibited a slugger phenotype, defined by a prolonged migrating slug stage. Like other slugger mutants, they were hypersensitive to ammonia, which has been known to inhibit culmination by raising the pH of intracellular acidic compartments. Interestingly, TrrOE cells showed defective acidification of intracellular compartments and decreased activity of vacuolar H+-ATPase which functions in the acidification of intracellular compartments. Moreover, biochemical studies revealed that the thioredoxin system can directly reduce the catalytic subunit of vacuolar H+-ATPase whose activity is regulated by reversible disulphide bond formation. Taken together, these results suggest that Dictyostelium Trr may be essential for growth and play a role in regulation of phagocytosis and culmination, possibly through the modulation of vacuolar H+-ATPase activity.
Collapse
Affiliation(s)
- Sun-Young Jeong
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|