1
|
Devlin DJ, Nozawa K, Ikawa M, Matzuk MM. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol Reprod 2020; 103:205-222. [PMID: 32588889 PMCID: PMC7401401 DOI: 10.1093/biolre/ioaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Toyko, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Hsieh WC, Ramadesikan S, Fekete D, Aguilar RC. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS One 2018; 13:e0192635. [PMID: 29444177 PMCID: PMC5812626 DOI: 10.1371/journal.pone.0192635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Lowe syndrome is an X-linked condition characterized by congenital cataracts, neurological abnormalities and kidney malfunction. This lethal disease is caused by mutations in the OCRL1 gene, which encodes for the phosphatidylinositol 5-phosphatase Ocrl1. While in the past decade we witnessed substantial progress in the identification and characterization of LS patient cellular phenotypes, many of these studies have been performed in knocked-down cell lines or patient's cells from accessible cell types such as skin fibroblasts, and not from the organs affected. This is partially due to the limited accessibility of patient cells from eyes, brain and kidneys. Here we report the preparation of induced pluripotent stem cells (iPSCs) from patient skin fibroblasts and their reprogramming into kidney cells. These reprogrammed kidney cells displayed primary cilia assembly defects similar to those described previously in cell lines. Additionally, the transcription factor and cap mesenchyme marker Six2 was substantially retained in the Golgi complex and the functional nuclear-localized fraction was reduced. These results were confirmed using different batches of differentiated cells from different iPSC colonies and by the use of the human proximal tubule kidney cell line HK2. Indeed, OCRL1 KO led to both ciliogenesis defects and Six2 retention in the Golgi complex. In agreement with Six2's role in the suppression of ductal kidney lineages, cells from this pedigree were over-represented among patient kidney-reprogrammed cells. We speculate that this diminished efficacy to produce cap mesenchyme cells would cause LS patients to have difficulties in replenishing senescent or damaged cells derived from this lineage, particularly proximal tubule cells, leading to pathological scenarios such as tubular atrophy.
Collapse
Affiliation(s)
- Wen-Chieh Hsieh
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
| | - Donna Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN United States of America
| | - Ruben Claudio Aguilar
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN United States of America
| |
Collapse
|
3
|
Levy D, Davidovich A, Zirkin S, Frug Y, Cohen AM, Shalom S, Don J. Activation of cell cycle arrest and apoptosis by the proto-oncogene Pim-2. PLoS One 2012; 7:e34736. [PMID: 22506047 PMCID: PMC3323563 DOI: 10.1371/journal.pone.0034736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 03/07/2012] [Indexed: 12/13/2022] Open
Abstract
Potent survival effects have been ascribed to the serine/threonine kinase proto-oncogene PIM-2. Elevated levels of PIM-2 are associated with various malignancies. In human cells, a single Pim-2 transcript gives rise mainly to two protein isoforms (34, 41 kDa) that share an identical catalytic site but differ at their N-terminus, due to in-frame alternative translation initiation sites. In this study we observed that the 34 kDa PIM-2 isoform has differential nuclear and cytoplasmic forms in all tested cell lines, suggesting a possible role for the balance between these forms for PIM-2's function. To further study the cellular role of the 34 kDa isoform of PIM-2, an N-terminally HA-tagged form of this isoform was transiently expressed in HeLa cells. Surprisingly, this resulted in increased level of G1 arrested cells, as well as of apoptotic cells. These effects could not be obtained by a Flag-tagged form of the 41 kDa isoform. The G1 arrest and apoptotic effects were associated with an increase in T14/Y15 phosphorylation of CDK2 and proteasom-dependent down-regulation of CDC25A, as well as with up-regulation of p57, E2F-1, and p73. No such effects were obtained upon over-expression of a kinase-dead form of the HA-tagged 34 kDa PIM-2. By either using a dominant negative form of p73, or by over-expressing the 34 kDa PIM-2 in p73-silenced cells, we demonstrated that these effects were p73-dependent. These results demonstrate that while PIM-2 can function as a potent survival factor, it can, under certain circumstances, exhibit pro-apoptotic effects as well.
Collapse
Affiliation(s)
- Daphna Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ateret Davidovich
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shahar Zirkin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yulia Frug
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amos M. Cohen
- Hemato-Oncology Unit, Davidoff Center, Rabin Medical Center, Petach-Tikva, Israel
| | - Sara Shalom
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jeremy Don
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
4
|
Zuo Y, Gao J, Yeung WSB, Lee KF. The testis-specific VAD1.3/AEP1 interacts with β-actin and syntaxin 1 and directs peri-nuclear/Golgi expression with bipartite nucleus localization (BNL) sequence. Biochem Biophys Res Commun 2010; 401:275-80. [PMID: 20850414 DOI: 10.1016/j.bbrc.2010.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 09/10/2010] [Indexed: 01/24/2023]
Abstract
VAD1.3 (AEP1), a novel testis-specific gene, was first isolated from the testis of a retinol-treated vitamin-A-deficient (VAD) rat model. It is expressed at the acrosomal region of spermatids from postnatal day 25. VAD1.3 immunoreactivity is present in rat, human, monkey and porcine spermatids and spermatozoa, suggesting that VAD1.3 may play a role in acrosome formation. However, direct evidence on the detailed sub-cellular localization of the VAD1.3 protein in the acrosome and how VAD1.3 is involved in acrosome formation remains largely unknown. Here, we isolated and identified VAD1.3 interacting proteins by immunoprecipitation followed by mass spectrometry, and determined the functional motifs of VAD1.3 that were important for its specific sub-cellular location in vitro. We found that VAD1.3 bound to syntaxin 1 and β-actin proteins in vitro. Immunogold electron microscopic study localized VAD1.3 immunoreactivity to the acrosome membranes and matrix, and colocalized it with the β-actin protein. The full-length GFP-VAD (1-3601) and GFP-VAD (1-730) fusion proteins that contain the bipartite nucleus localization (BNL) signal were located in the peri-nucleus/Golgi of the transfected cells. In addition, the GFP signal colocalized with the endoplasmic reticulum marker and the syntaxin 1 protein in the transfected HeLa and GC-2spd cells. The C-terminal GFP-VAD (1770-3601) was expressed in the nucleus. Taken together, VAD1.3 interacts with β-actin and syntaxin 1 in vitro. The BNL signal may mediate the peri-nuclei localization of the protein that may interact with syntaxin 1 and β-actin for acrosome formation in spermatogenesis.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
5
|
de Mateo S, Martínez-Heredia J, Estanyol JM, Domíguez-Fandos D, Vidal-Taboada JM, Ballescà JL, Oliva R. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 2007; 7:4264-77. [DOI: 10.1002/pmic.200700521] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Bailey D, O'Hare P. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal 2007; 9:2305-21. [PMID: 17887918 DOI: 10.1089/ars.2007.1796] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulated intramembrane proteolysis (RIP) of the transmembrane transcription factor ATF6 represents a key step in effecting adaptive response to the presence of unfolded or malfolded protein in the endoplasmic reticulum. Recent studies have highlighted new ATF6-related transmembrane transcription factors. It is likely that current models for ER stress signaling are incomplete and that the expansion of the bZIP transmembrane family reflects selectivity in many aspects of these responses, including the type and duration of any particular stress, the cell type in which it occurs, and the integration with other aspects of cell-type-specific organization or additional intrinsic pathways, and the integration and communication between these pathways, not only in a cell-type-specific manner, but also between different tissues and organs. This review summarizes current information on the bZIP-transmembrane proteins and discusses outstanding questions on the elucidation of the stress signals, the repertoire of components involved in regulating different aspects of the forward transport, cleavage, nuclear import, transcriptional activity, and turnover of each of these factors, and dissection of the integration of the various outputs into broad coordinated responses.
Collapse
Affiliation(s)
- Daniel Bailey
- Marie Curie Research Institute, The Chart, Oxted, Surrey, England
| | | |
Collapse
|