1
|
Aizer A, Noach-Hirsh M, Shimon C, Dratviman-Storobinsky O, Marom LH, Maman E, Orvieto R. Impact of artificial oocyte activation with calcium ionophore on ICSI outcomes using surgically retrieved spermatozoa: A comprehensive analysis. Andrology 2025. [PMID: 40277447 DOI: 10.1111/andr.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/08/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Intracytoplasmic sperm injection (ICSI) is an effective technique for addressing male infertility. However, fertilization challenges persist, particularly with spermatozoa obtained through testicular sperm procedures. OBJECTIVES This study evaluates the impact of artificial oocyte activation (AOA) on ICSI outcomes using surgically retrieved spermatozoa (motile, immotile, fresh, and frozen), including results from vitrified-warmed embryo transfers and investigating potential improvements in clinical outcomes. MATERIALS AND METHODS A retrospective analysis was conducted on 73 testicular sperm extraction (TESE)-ICSI cycles involving 57 patients. Outcomes were compared between AOA and non-AOA groups using a sibling oocyte model. RESULTS Fertilization rates were similar between AOA and non-AOA groups (53.2% vs. 52.3%). However, AOA showed a non-significant increase in TQE rates (64.4% vs. 54.7%, p = 0.067). Cumulative live-birth rates were comparable between AOA (19.3%) and non-AOA (21.6%) groups (p = 0.77). Notably, AOA significantly enhanced TQE rates when used with fresh spermatozoa (65.9% vs. 49.4%, p = 0.026) and non-progressive/immotile spermatozoa (72.7% vs. 51.1%, p = 0.031), yet had minimal effect with motile spermatozoa. There were no significant differences in embryo development timings between the groups. Obstetric and neonatal outcomes were comparable in-between groups, supporting the safety of AOA in this setting. DISCUSSION AOA appears to positively influence ICSI outcomes when using fresh and non-progressive/immotile spermatozoa. While the overall morphokinetics of embryo development were not affected, the improvement in TQE rates highlights AOA's potential in enhancing embryo quality. The consistent trends toward higher clinical pregnancy and live-birth rates further support its clinical utility. CONCLUSION The study demonstrates that AOA significantly improves TQE rates, without negatively impacting overall morphokinetics or obstetric and neonatal outcomes. While the results suggest AOA's potential for specific subsets of male factor infertility cases, further research is needed to confirm its long-term safety and efficacy before broader clinical applications.
Collapse
Affiliation(s)
- Adva Aizer
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| | - Meirav Noach-Hirsh
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
| | - Chen Shimon
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
| | - Olga Dratviman-Storobinsky
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
| | - Lilach Haham Marom
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| | - Ettie Maman
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| | - Raoul Orvieto
- IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Savy V, Stein P, Delker D, Estermann MA, Papas BN, Xu Z, Radonova L, Williams CJ. Calcium signals shape metabolic control of H3K27ac and H3K18la to regulate EGA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643362. [PMID: 40161793 PMCID: PMC11952514 DOI: 10.1101/2025.03.14.643362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The use of assisted reproductive technologies (ART) has enabled the birth of over 9 million babies; but it is associated with increased risks of negative metabolic outcomes in offspring. Yet, the underlying mechanism remains unknown. Calcium (Ca2+) signals, which initiate embryo development at fertilization, are frequently disrupted in human ART. In mice, abnormal Ca2+ signals at fertilization impair embryo development and adult offspring metabolism. Changes in intracellular Ca2+ drive mitochondrial activity and production of metabolites used by the epigenetic machinery. For example, acetyl-CoA (derived mainly from pyruvate) and lactyl-CoA (derived from lactate) are used for writing H3K27ac and H3K18la marks that orchestrate initiation of development. Using both a genetic mouse model and treatment with ionomycin to raise intracellular Ca2+ of wild-type fertilized eggs, we found that excess Ca2+ at fertilization changes metabolic substrate availability, causing epigenetic changes that impact embryo development and offspring health. Specifically, increased Ca2+ exposure at fertilization led to increased H3K27ac levels and decreased H3K18la levels at the 1-cell (1C) stage, that persisted until the 2-cell (2C) stage. Ultralow input CUT&Tag revealed significant differences in H3K27ac and H3K18la genomic profiles between control and ionomycin groups. In addition, increased Ca2+ exposure resulted in a marked reduction in global transcription at the 1C stage that persisted through the 2C stage due to diminished activity of RNA polymerase I. Excess Ca2+ following fertilization increased pyruvate dehydrogenase activity (enzyme that converts pyruvate to acetyl-CoA) and decreased total lactate levels. Provision of exogenous lactyl-CoA before ionomycin treatment restored H3K18la levels at the 1C and 2C stages and rescued global transcription to control levels. Our findings demonstrate conclusively that Ca2+ dynamics drive metabolic regulation of epigenetic reprogramming at fertilization and alter EGA.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Martín A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian N. Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lenka Radonova
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Latham KE. Paternal Effects in Mammalian Reproduction: Functional, Environmental, and Clinical Relevance of Sperm Components in Early Embryos and Beyond. Mol Reprod Dev 2025; 92:e70020. [PMID: 40123230 PMCID: PMC11931271 DOI: 10.1002/mrd.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
In addition to widely recognized contributions of the paternal genome, centriole, and oocyte-activation factors, sperm deliver a wide range of macromolecules to the fertilized embryo. The impacts of these factors on the embryo, progeny, and even subsequent generations have become increasingly apparent, along with an understanding of an extensive potential for male health and environmental exposures to exert both immediate and long-term impacts on mammalian reproduction. Available data reveal that sperm factors interact with and regulate the actions of oocyte factors as well as exerting additional direct effects on the early embryo. This review provides a summary of the nature and mechanisms of paternal effects in early mammalian embryos, long-term effects in progeny, susceptibility of sperm components to diverse environmental factors, and potential approaches to mitigate adverse effects of such exposures.
Collapse
Affiliation(s)
- Keith E. Latham
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
O’Keeffe FJ, Mendz GL. Twinning and Individuation: An Appraisal of the Current Model and Ethical Implications. BIOLOGY 2025; 14:104. [PMID: 40001872 PMCID: PMC11851495 DOI: 10.3390/biology14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
Discourses on human embryo experimentation often refer to monozygotic twinning and individuation. A criterion to establish regulations that guide human embryo research proposes that individuation is achieved once the embryo ceases to have the potential for dividing into two or more viable entities at about 15 days of gestational age. This standard is based on an updated version of a developmental model initially proposed by George Corner. A fundamental problem with this approach is the model's lack of sufficient evidence to explain adequately human embryo twinning and, consequently, to serve as a basis to establish appropriate ethical guidelines for embryo experimentation. In addition, subsequent formulations of Corner's model added an extension of blastomere totipotency to different moments of gestation, without a proper scientific basis. The model is also challenged by monozygotic twinnings that result in placental and amniotic arrangements incompatible with Corner's framework. Investigations into the physiology of fertilisation and of the zygote suggest that individuation may occur at a very early stage. An alternative description of monozygotic twinning may explain better sesquizygotic twinning events and serve to re-evaluate the individuation criterion. The study aims to investigate deficiencies in the embryology of this model and assess their ethical implications.
Collapse
Affiliation(s)
| | - George L. Mendz
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW 2010, Australia;
| |
Collapse
|
5
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
7
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
8
|
Nakai M, Suzuki SI, Fuchimoto DI, Sembon S, Kikuchi K. Oocyte activation with phospholipase Cζ mRNA induces repetitive intracellular Ca 2+ rises and improves the quality of pig embryos after intracytoplasmic sperm injection. J Reprod Dev 2024; 70:229-237. [PMID: 38853022 PMCID: PMC11310388 DOI: 10.1262/jrd.2023-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
For the intracytoplasmic sperm injection (ICSI) procedure in pigs, an electrical pulse (EP) has been used as an effective method for oocyte stimulation, but unlike sperm, EP is unable to induce Ca2+ oscillations. In this study, we investigated the effects of generating artificial Ca2+ oscillations with phospholipase Cζ (PLCζ) mRNA, a candidate sperm factor, on fertilization, embryonic development, and gene expression after ICSI. Firstly, the concentration of PLCζ mRNA of a fixed volume (1.0 pl) that would induce a pattern of Ca2+ rise similar to that of in vitro fertilized (IVF) sperm was examined and determined to be 300 ng/μl. Secondly, the effects of oocyte stimulation methods on fertilization and embryonic development were investigated. ICSI-oocytes were activated by EP (EP group) or by PLCζ mRNA (PLCζ group). Furthermore, IVF-oocytes (IVF group) and ICSI-oocytes with and without an injection of buffer (buffer and untreated groups, respectively) were used as controls. It was found that the rates of normal fertilization in the PLCζ and EP groups were significantly higher than those in the buffer and untreated groups. The blastocyst formation rates did not differ among the groups. The embryo quality in the EP group was inferior to those in the PLCζ and IVF groups. Additionally, the expression level of a proapoptosis-related gene (Caspase-3) in the EP group was significantly higher than those in the PLCζ and IVF groups. Our data suggest that oocyte activation by PLCζ mRNA has the effect of improving embryo quality.
Collapse
Affiliation(s)
- Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Shun-Ichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Dai-Ichiro Fuchimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Shoichiro Sembon
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
9
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
10
|
Shacfe G, Turko R, Syed HH, Masoud I, Tahmaz Y, Samhan LM, Alkattan K, Shafqat A, Yaqinuddin A. A DNA Methylation Perspective on Infertility. Genes (Basel) 2023; 14:2132. [PMID: 38136954 PMCID: PMC10743303 DOI: 10.3390/genes14122132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Infertility affects a significant number of couples worldwide and its incidence is increasing. While assisted reproductive technologies (ART) have revolutionized the treatment landscape of infertility, a significant number of couples present with an idiopathic cause for their infertility, hindering effective management. Profiling the genome and transcriptome of infertile men and women has revealed abnormal gene expression. Epigenetic modifications, which comprise dynamic processes that can transduce environmental signals into gene expression changes, may explain these findings. Indeed, aberrant DNA methylation has been widely characterized as a cause of abnormal sperm and oocyte gene expression with potentially deleterious consequences on fertilization and pregnancy outcomes. This review aims to provide a concise overview of male and female infertility through the lens of DNA methylation alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (G.S.); (R.T.); (H.H.S.); (I.M.); (Y.T.); (L.M.S.); (K.A.); (A.Y.)
| | | |
Collapse
|
11
|
Ahmed A, Saleem MA, Saeed F, Afzaal M, Imran A, Akram S, Hussain M, Khan A, Al Jbawi E. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females. Food Sci Nutr 2023; 11:5004-5027. [PMID: 37701195 PMCID: PMC10494632 DOI: 10.1002/fsn3.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 09/14/2023] Open
Abstract
Calcium is imperative in maintaining a quality life, particularly during later ages. Its deficiency results in a wide range of metabolic disorders such as dental changes, cataracts, alterations in brain function, and osteoporosis. These deficiencies are more pronounced in females due to increased calcium turnover throughout their life cycle, especially during pregnancy and lactation. Vitamin D perform a central role in the metabolism of calcium. Recent scientific interventions have linked calcium with an array of metabolic disorders in females including hypertension, obesity, premenstrual dysphoric disorder, polycystic ovary syndrome (PCOS), multiple sclerosis, and breast cancer. This review encompasses these female metabolic disorders with special reference to calcium and vitamin D deficiency. This review article aims to present and elaborate on available data regarding the worldwide occurrence of insufficient calcium consumption in females and allied health risks, to provide a basis for formulating strategies and population-level scientific studies to adequately boost calcium intake and position where required.
Collapse
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Awais Saleem
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Human Nutrition and DieteticsMirpur University of Science and TechnologyMirpurPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Sidra Akram
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Khan
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
12
|
Quintana-Vehí A, Martínez M, Zamora MJ, Rodríguez A, Vassena R, Miguel-Escalada I, Popovic M. Significant differences in efficiency between two commonly used ionophore solutions for assisted oocyte activation (AOA): a prospective comparison of ionomycin and A23187. J Assist Reprod Genet 2023; 40:1661-1668. [PMID: 37247099 PMCID: PMC10352473 DOI: 10.1007/s10815-023-02833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023] Open
Abstract
PURPOSE Despite the success of ICSI in treating severe male factor infertile patients, total fertilization failure (FF) still occurs in around 1-3% of ICSI cycles. To overcome FF, the use of calcium ionophores has been proposed to induce oocyte activation and restore fertilization rates. However, assisted oocyte activation (AOA) protocols and ionophores vary between laboratories, and the morphokinetic development underlying AOA remains understudied. METHODS A prospective single-center cohort study involving 81 in vitro matured metaphase-II oocytes from 66 oocyte donation cycles artificially activated by A23187 (GM508 CultActive, Gynemed) (n=42) or ionomycin (n=39). Parthenogenesis was induced, and morphokinetic parameters (tPNa, tPNf, t2-t8, tSB, and tB) were compared between the 2 study groups and a control group comprising 39 2PN-zygotes from standard ICSI cycles. RESULTS Ionomycin treatment resulted in higher activation rates compared to A23187 (38.5% vs 23.8%, p=0.15). Importantly, none of the A23187-activated parthenotes formed blastocysts. When evaluating the morphokinetic dynamics between the two ionophores, we found that tPNa and tPNf were significantly delayed in the group treated by A23187 (11.84 vs 5.31, p=0.002 and 50.15 vs 29.69, p=0.005, respectively). t2 was significantly delayed in A23187-activated parthenotes when compared to the double heterologous control embryo group. In contrast, the morphokinetic development of ionomycin-activated parthenotes was comparable to control embryos (p>0.05). CONCLUSION Our results suggest that A23187 leads to lower oocyte activation rates and profoundly affects morphokinetic timings and preimplantation development in parthenotes. Despite our limited sample size and low parthenote competence, standardization and further optimization of AOA protocols may allow wider use and improved outcomes for FF cycles.
Collapse
Affiliation(s)
| | - M Martínez
- Clínica EUGIN, C/ Balmes 236, 08006, Barcelona, Spain
| | - M J Zamora
- Clínica EUGIN, C/ Balmes 236, 08006, Barcelona, Spain
| | | | - R Vassena
- Eugin Group, 08006, Barcelona, Spain
| | | | - M Popovic
- Eugin Group, 08006, Barcelona, Spain
| |
Collapse
|
13
|
Hirose N, Kikuchi Y, Kageyama A, Sugita H, Sakurai M, Kawata Y, Terakawa J, Wakayama T, Ito J, Kashiwazaki N. Successful Production of Offspring Derived from Phospholipase C Zeta-Deficient Sperm by Additional Artificial Activation. Life (Basel) 2023; 13:life13040980. [PMID: 37109509 PMCID: PMC10143324 DOI: 10.3390/life13040980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized that sperm specific phospholipase C (PLCζ) is a strong candidate as the sperm factor which can induce calcium oscillations and, at least in mammals, the genetic mutation of PLCζ in human causes male infertility due to the lack of calcium oscillations in the oocytes. Recent studies showed that the sperm lacking PLCζ (Plcz1-/-) still could induce rise(s) of intracellular calcium in the oocytes after IVF but not intracytoplasmic sperm injection (ICSI). In the ICSI oocytes, no pronuclear formation or development to the two-cell stage was observed. However, it is still unclear whether additional activation treatment can rescue the low developmental ability of Plcz1-/--sperm-derived oocytes after ICSI. In this study, we examined whether oocytes injected with a Plcz1-/- sperm can develop to term by additional artificial activation. In oocytes injected a Plcz1-/- sperm and Plcz1-/- and eCS (another candidate of the sperm factor) double knockout sperm (Plcz1-/-eCS-/-), the rates of pronuclear formation were very low (2.0 ± 2.3% and 6.1 ± 3.7%, respectively) compared to control (92.1 ± 2.6%). However, these rates were dramatically improved by additional procedures of PLCζ-mRNA injection or SrCl2 treatment (Plcz1-/- sperm + PLCζ mRNA, Plcz1-/- sperm + SrCl2 and Plcz1-/-eCS-/- sperm + PLCζ mRNA; 64.2 ± 10.8%, 89.2 ± 2.4% and 72.6 ± 5.4%, respectively). Most of the oocytes were developed to the two-cell stage. After embryo transfer, healthy pups were obtained in all these groups (Plcz1-/- sperm + PLCζ mRNA:10.0 ± 2.8%, Plcz1-/- sperm + SrCl2:4.0 ± 4.3% and Plcz1-/-eCS-/- sperm + PLCζ mRNA: 10.0 ± 5.7%). The rate in Plcz1-/- sperm + SrCl2 group was significantly lower than that in control (26.0 ± 2.4%). Taken together, our present results show that additional activation treatment such as SrCl2 and PLCζ mRNA can fully support to develop to term even in oocyte injected Plcz1-/- sperm. In addition, PLCζ-induced oocyte activation is more suitable for successful development to term compared to that such as phenomenon induced by SrCl2. These findings will contribute to improvement for male-dependent human infertility and reproductive technologies in other mammalian species.
Collapse
Affiliation(s)
- Naoki Hirose
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Hibiki Sugita
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Miu Sakurai
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Yui Kawata
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Jumpei Terakawa
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Kanagawa 252-0206, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
- School of Veterinary Medicine, Azabu University, Kanagawa 252-0206, Japan
| |
Collapse
|
14
|
Artificial oocyte activation with ionomycin compared with A23187 among patients at risk of failed or impaired fertilization. Reprod Biomed Online 2023; 46:35-45. [PMID: 36379856 DOI: 10.1016/j.rbmo.2022.08.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/31/2023]
Abstract
RESEARCH QUESTION Do fertilization rates differ between intracytoplasmic sperm injection (ICSI) cycles treated with artificial oocyte activation (AOA) using 10 µmol/l ionomycin or commercial A23187 in women at risk of failed or impaired fertilization? DESIGN This single-centre, 7-year retrospective cohort study included 157 couples with a history of total fertilization failure (TFF, 0%) or low fertilization (<30%) after ICSI, or with severe oligo-astheno-teratozoospermia (OAT) in the male partner. Couples and underwent 171 ICSI-AOA cycles using either 10 µmol/l ionomycin or commercial A23187. The embryological and clinical outcomes were compared. RESULTS Fertilization rates in the ionomycin group were significantly higher than those in the A23187 group for all three subgroups (TFF, 46.9% versus 28.4%, P = 0.002; low fertilization, 67.7% versus 49.2%, P < 0.001; severe OAT, 66.4% versus 31.6%, P < 0.001). AOA with ionomycin significantly increased the day 3 cleavage rate (P = 0.009) when compared with A23187 in the low fertilization group, but not in the TFF or severe OAT group (both P > 0.05). The rates of day 3 good-quality embryos, clinical pregnancy, implantation and live birth, and the cumulative live birth, did not differ between the two groups (all P > 0.05). A total of 64 live births resulted in 72 healthy babies born. CONCLUSIONS AOA with 10 µmol/l ionomycin may be more effective than commercial A23187 in improving oocyte activation in patients at risk of failed or impaired fertilization, especially in cases of sperm-related defects.
Collapse
|
15
|
Akashi K, Yamada M, Jwa SC, Utsuno H, Kamijo S, Hirota Y, Tanaka M, Osuga Y, Kuji N. Artificial oocyte activation using Ca 2+ ionophores following intracytoplasmic sperm injection for low fertilization rate. Front Endocrinol (Lausanne) 2023; 14:1131808. [PMID: 36967799 PMCID: PMC10034378 DOI: 10.3389/fendo.2023.1131808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
This large multi-center retrospective study examined whether artificial oocyte activation (AOA) using Ca2+ ionophore following ICSI improves the live birth rate for couples with previous ICSI cycles of unexplained low fertilization rate. In this large-scale multi-center retrospective study conducted in Japan, data were collected from Keio University and 17 collaborating institutions of the Japanese Institution for Standardizing Assisted Reproductive Technology. Between January 2015 and December 2019, 198 couples were included in this study. Oocytes for both the intervention and control groups were procured from the same pool of couples. Oocytes obtained from ICSI cycles with no or low fertilization rate (<50%) with unknown causes were included in the control (conventional ICSI) group while oocytes procured from ICSI cycles followed by performing AOA were assigned to the intervention (ICSI-AOA) group. Those fertilized with surgically retrieved sperm were excluded. ICSI-AOA efficacy and safety were evaluated by comparing these two groups. Live birth rate was the primary outcome. The ICSI-AOA group (2,920 oocytes) showed a significantly higher live birth per embryo transfer rate (18.0% [57/316]) compared to that of the conventional ICSI group with no or low fertilization rate (1,973 oocytes; 4.7% [4/85]) (odds ratio 4.5, 95% confidence interval 1.6-12.6; P<0.05). A higher live birth rate was observed in younger patients without a history of oocyte retrieval. Miscarriage, preterm delivery, and fetal congenital malformation rates were similar between the two groups. ICSI-AOA may reduce fertilization failure without increasing risks during the perinatal period. AOA may be offered to couples with an ICSI fertilization rate < 50%.
Collapse
Affiliation(s)
- Kazuhiro Akashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Mitsutoshi Yamada,
| | - Seung Chik Jwa
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Hiroki Utsuno
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Shintaro Kamijo
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Zhang X, Li L, Zhang W, Luo Y, Mao Y, Du H, Li L. Embryo development and live birth resulted from artificial oocyte activation after microdissection testicular sperm extraction with ICSI in patients with non-obstructive azoospermia. Front Endocrinol (Lausanne) 2023; 14:1123541. [PMID: 36896176 PMCID: PMC9989460 DOI: 10.3389/fendo.2023.1123541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION The application of microdissection testicular sperm extraction (micro-TESE) to retrieve the sperm of patients with non-obstructive azoospermia (NOA) has greatly increased. Patients with NOA often have poor quality sperm. Unfortunately, there are few studies on artificial oocyte activation (AOA) performed on patients who successfully retrieved motile and immotile sperm by micro-TESE after intracytoplasmic sperm injection (ICSI). Therefore, this study sought to obtain more comprehensive evidence-based data and embryo development outcomes to aid consultation of patients with NOA who opted to receive assisted reproductive techniques and to determine whether AOA needs to be performed in different motile sperm after ICSI. METHODS This retrospective study involved 235 patients with NOA who underwent micro-TESE to retrieve adequate sperm for ICSI between January 2018 and December 2020. A total of 331 ICSI cycles were performed in the 235 couples. Embryological, clinical, and neonatal outcomes were demonstrated comprehensively between motile sperm and immotile sperm using AOA and non-AOA treatment. RESULTS Motile sperm injection with AOA (group 1) showed significantly higher fertility rate (72.77% vs. 67.59%, p=0.005), 2 pronucleus (2PN) fertility rate (64.33% vs. 60.22%, p=0.036), and miscarriage rate (17.65% vs. 2.44%, p=0.018) compared with motile sperm injection with non-AOA (group 2). Group 1 had comparable available embryo rate (41.29% vs. 40.74%, p=0.817), good embryo rate (13.44% vs. 15.44%, p=0.265), and without an embryo for transfer rate (10.85% vs. 9.90%, p=0.815) compared with group 2. Immotile sperm injection with AOA (group 3) displayed significantly higher fertility rate (78.56% vs. 67.59%, p=0.000), 2PN fertility rate (67.36% vs. 60.22%, p=0.001), without an embryo for transfer rate (23.76% vs. 9.90%, p=0.008), and miscarriage rate (20.00% vs. 2.44%, p=0.014), but significantly lower available embryo rate (26.63% vs.40.74%, p=0.000) and good embryo rate (15.44% vs. 6.99%, p=0.000) compared with group 2. In groups 1, 2, and 3, the rates of implantation (34.87%, 31.85% and 28.00%, respectively; p=0.408), clinical pregnancy (43.87%, 41.00%, and 34.48%, respectively; p=0.360) and live birth (36.13%, 40.00%, and 27.59%, respectively; p=0.194) were similar. DISCUSSION For those patients with NOA from whom adequate sperm were retrieved for ICSI, AOA could improve fertilization rate, but not embryo quality and live birth outcomes. For patients with NOA and only immotile sperm, AOA can help achieve acceptable fertilization rate and live birth outcomes. AOA is recommended for patients with NOA only when immotile sperm are injected.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhong Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongzi Du
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Li, ; Hongzi Du,
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Li, ; Hongzi Du,
| |
Collapse
|
17
|
Cabeza JP, Cámera J, Briski O, Felipe MY, Salamone DF, Gambini A. Preimplantation Developmental Competence of Bovine and Porcine Oocytes Activated by Zinc Chelation. Animals (Basel) 2022; 12:ani12243560. [PMID: 36552480 PMCID: PMC9774810 DOI: 10.3390/ani12243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
After sperm-oocyte fusion, intracytoplasmic rises of calcium (Ca) induce the release of zinc (Zn) out of the oocyte (Zn sparks). Both phenomena are known to play an essential role in the oocyte activation process. Our work aimed to explore different protocols for activating bovine and porcine oocytes using the novel zinc chelator 1,10-phenanthroline (PHEN) and to compare developmental rates and quality to bovine IVF and parthenogenetic ionomycin-induced embryos in both species. Different incubation conditions for the zinc chelator were tested, including its combination with ionomycin. Embryo quality was assessed by immunofluorescence of SOX2, SOX17, OCT4, and CDX2 and total cell number at the blastocyst stage. Even though blastocyst development was achieved using a zinc chelator in bovine, bypassing calcium oscillations, developmental rates, and blastocyst quality were compromised compared to embryos generated with sperm-induced or ionomycin calcium rise. On the contrary, zinc chelation is sufficient to trigger oocyte activation in porcine. Additionally, we determined the optimal exposure to PHEN for this species. Zinc chelation and artificial induction of calcium rise combined did not improve developmental competence. Our results contribute to understanding the role of zinc during oocyte activation and preimplantation embryo development across different mammalian species.
Collapse
Affiliation(s)
- Juan P. Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan Cámera
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Minerva Yauri Felipe
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F. Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia
- Correspondence:
| |
Collapse
|
18
|
Savy V, Stein P, Shi M, Williams CJ. PMCA1 depletion in mouse eggs amplifies calcium signaling and impacts offspring growth†. Biol Reprod 2022; 107:1439-1451. [PMID: 36130203 PMCID: PMC10144700 DOI: 10.1093/biolre/ioac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Egg activation in mammals is triggered by oscillations in egg intracellular calcium (Ca2+) level. Ca2+ oscillation patterns can be modified in vitro by changing the ionic composition of culture media or in vivo by conditions affecting mitochondrial function, such as obesity and inflammation. In mice, disruption of Ca2+ oscillations in vitro impacts embryo development and offspring growth. Here we tested the hypothesis that, even without in vitro manipulation, abnormal Ca2+ signaling following fertilization impacts offspring growth. Plasma membrane Ca2+ ATPases (PMCA) extrude cytosolic Ca2+ to restore Ca2+ homeostasis. To disrupt Ca2+ signaling in vivo, we conditionally deleted PMCA1 (cKO) in oocytes. As anticipated, in vitro fertilized cKO eggs had increased Ca2+ exposure relative to controls. To assess the impact on offspring growth, cKO females were mated to wild type males to generate pups that had high Ca2+ exposure at fertilization. Because these offspring would be heterozygous, we also tested the impact of global PMCA1 heterozygosity on offspring growth. Control heterozygous pups that had normal Ca2+ at fertilization were generated by mating wild type females to heterozygous males; these control offspring weighed significantly less than their wild type siblings. However, heterozygous offspring from cKO eggs (and high Ca2+ exposure) were larger than heterozygous controls at 12 week-of-age and males had altered body composition. Our results show that global PMCA1 haploinsufficiency impacts growth and support that abnormal Ca2+ signaling after fertilization in vivo has a long-term impact on offspring weight. These findings are relevant for environmental and medical conditions affecting Ca2+ handling and for design of culture conditions and procedures for domestic animal and human assisted reproduction.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Paula Stein
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Fluks M, Tamborski S, Szkulmowski M, Ajduk A. Optical coherence microscopy allows for quality assessment of immature mouse oocytes. Reproduction 2022; 164:83-95. [PMID: 35900349 DOI: 10.1530/rep-22-0178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Optical coherence microscopy is a label-free and non-invasive imaging technique capable of 3D subcellular structure visualization. Here we show that this method allows for quality assessment of immature mouse oocytes based on their chromatin conformation and can be a valuable addition to the toolkit used in assisted reproduction procedures. Abstract The success of assisted reproductive technologies, and particularly in vitro maturation, is tightly linked to the quality of oocytes. Therefore, there is a need for robust, reliable, and easy-to-assess biomarkers of oocyte developmental competence. Microscopy techniques visualizing oocyte intracellular structure could provide such biomarkers. However, fluorescence imaging methods, applied frequently in biology and allowing for detailed structural and dynamic studies of single cells, require fluorescent tags to visualize cellular architecture and may cause short- and long-term photo-damage. On the other hand, traditional light microscopy, although relatively non-invasive, does not provide detailed structural information. Optical coherence microscopy (OCM) is a promising alternative, as it does not require sample pre-processing or labelling and can provide 3D images of intracellular structures. Here we applied OCM to assess the chromatin conformation of immature mouse oocytes, a feature that corresponds with their transcriptional status and developmental competence and cannot be examined by traditional light microscopy. We showed that OCM distinguished oocytes with so-called non-surrounded nucleoli (NSN) and surrounded nucleoli (SN) chromatin conformation with very high sensitivity and specificity and that OCM scanning did not decrease the quality of oocytes. Finally, we cross-referenced OCM data with the oocyte ability to undergo normal nuclear and cytoplasmic maturation and proven that indeed oocytes scored with OCM as NSN mature less effectively than oocytes scored as SN. Our results suggest that OCM may be a valuable addition to the imaging toolkit used in assisted reproduction procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Szymon Tamborski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Effect of A23187 ionophore treatment on human blastocyst development-a sibling oocyte study. J Assist Reprod Genet 2022; 39:1225-1232. [PMID: 35357606 DOI: 10.1007/s10815-022-02467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To investigate whether treatment with commercially available ready-to-use A23187 ionophore (GM508-CultActive) improves embryo development outcome in patients with a history of embryo developmental problems. METHODS This is a uni-center prospective study in which sibling oocytes of patients with embryos of poor quality on day 5 in the previous cycle were treated or not with CultActive. RESULTS Two hundred forty-seven metaphase II (MII) oocytes from 19 cycles performed between 2016 and 2019 were included in the study. After ICSI, the sibling oocytes were assigned to the treatment group or to the control group, following an electronically generated randomization list. A number of 122 MII were treated with CultActive and 125 MII had no treatment and were assigned to the control group. No difference in fertilization rate (p = 0.255) or in the capacity of embryos to reach good quality on day 5 (p = 0.197) was observed between the two groups. The utilization rates defined as the number of embryos transferred or cryopreserved per mature oocyte (p = 0.438) or per fertilized oocytes (p = 0.299) were not significantly different between the treated group and the control group. CONCLUSION The results of the current study do not support the use of CultActive in cases with embryo developmental problems.
Collapse
|
21
|
Shafqat A, Kashir J, Alsalameh S, Alkattan K, Yaqinuddin A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front Cell Dev Biol 2022; 10:781953. [PMID: 35309905 PMCID: PMC8931327 DOI: 10.3389/fcell.2022.781953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Oocyte activation deficiency (OAD) is the basis of Total Fertilisation Failure (TFF) and is attributed to mutations in the PLCζ gene—termed male factor infertility. This derives abnormal Ca2+ oscillations and could be the main cause of primary disruptions in the gene expression of Ca2+-related proteins. Epigenetic mechanisms are universally accepted as key regulators of gene expression. However, epigenetic dysregulations have not been considered as potential mechanisms of oocyte-borne OAD. Herein, we discuss changes in the DNA methylome during oogenesis and embryogenesis. We further highlight key pathways comprising the oocyte Ca2+ toolkit, which could be targets of epigenetic alterations, especially aberrations in DNA methylation. Considering that the vast majority of epigenetic modifications examined during fertilization revolve around alterations in DNA methylation, we aim in this article to associate Ca2+-specific mechanisms with these alterations. To strengthen this perspective, we bring evidence from cancer research on the intricate link between DNA methylation and Ca2+ signaling as cancer research has examined such questions in a lot more detail. From a therapeutic standpoint, if our hypothesis is proven to be correct, this will explain the cause of TFF in idiopathic cases and will open doors for novel therapeutic targets.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Ahmed Yaqinuddin,
| |
Collapse
|
22
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
23
|
Kageyama A, Suyama A, Kinoshita R, Ito J, Kashiwazaki N. Dynamic changes of intracellular zinc ion level during maturation, fertilization, activation, and development in mouse oocytes. Anim Sci J 2022; 93:e13759. [PMID: 35880318 DOI: 10.1111/asj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Although it is well known that calcium oscillations are required for fertilization in all mammalian species studied to date, recent studies also showed the ejection of zinc into the extracellular milieu in a series of coordinated events, called "zinc spark," during mammalian fertilization. These results led us to the hypothesis that a zinc ion-dependent signal is important for oocyte maturation, fertilization (activation), and further embryonic development. In this study, we evaluated the amounts and localization of intracellular zinc ions during maturation, fertilization, activation, and embryonic development in mouse oocytes. Our results show that abundant zinc ions are present in both immature and mature oocytes. After in vitro fertilization, the amounts of zinc ions were dramatically decreased at the pronuclear (PN) stage. Artificial activation by cycloheximide, SrCl2 , and TPEN also reduced the amounts of zinc ions in the PN stage. On the other hand, PN embryos derived from sperm injection still showed high level of zinc ions. However, the amounts of zinc ions rapidly increased at the blastocysts regardless of activation method. We showed here that the amounts of zinc ions dramatically changed during maturation, fertilization, activation, and development in mouse oocytes.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ayumi Suyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ruka Kinoshita
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
24
|
Savy V, Stein P, Shi M, Williams CJ. Superovulation Does Not Alter Calcium Oscillations Following Fertilization. Front Cell Dev Biol 2021; 9:762057. [PMID: 34805168 PMCID: PMC8601230 DOI: 10.3389/fcell.2021.762057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Superovulation is a common approach to maximize the number of eggs available for either clinical assisted reproductive technologies or experimental animal studies. This procedure provides supraphysiological amounts of gonadotropins to promote continued growth and maturation of ovarian follicles that otherwise would undergo atresia. There is evidence in mice, cows, sheep, and humans that superovulation has a detrimental impact on the quality of the resulting ovulated eggs or embryos. Here we tested the hypothesis that eggs derived from superovulation have a reduced capacity to support calcium oscillations, which are a critical factor in the success of embryo development. Eggs were obtained from mice that were either naturally cycling or underwent a standard superovulation protocol. The eggs were either parthenogenetically activated using strontium or fertilized in vitro while undergoing monitoring of calcium oscillatory patterns. Following parthenogenetic activation, superovulated eggs had a slightly delayed onset and longer duration of the first calcium transient, but no differences in oscillation persistence, frequency, or total calcium signal. However, in vitro fertilized superovulated eggs had no differences in any of these measures of calcium oscillatory behavior relative to spontaneously ovulated eggs. These findings indicate that although subtle differences in calcium signaling can be detected following parthenogenetic activation, superovulation does not disrupt physiological calcium signaling at fertilization, supporting the use of this method for both clinical and experimental purposes.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive and Developmental Biology Laboratory, Durham, NC, United States
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, Durham, NC, United States
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, Durham, NC, United States
| |
Collapse
|
25
|
Yin M, Li M, Li W, Wu L, Yan Z, Zhao J, Ouyang J, Lyu Q, Yan Z, Li B. Efficacy of artificial oocyte activation in patients with embryo developmental problems: a sibling oocyte control study. Arch Gynecol Obstet 2021; 305:1225-1231. [DOI: 10.1007/s00404-021-06329-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
|
26
|
Tarozzi N, Nadalini M, Coticchio G, Zacà C, Lagalla C, Borini A. The paternal toolbox for embryo development and health. Mol Hum Reprod 2021; 27:6311671. [PMID: 34191013 DOI: 10.1093/molehr/gaab042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Indexed: 11/12/2022] Open
Abstract
The sperm is essential for reconstitution of embryonic diploidy and highly specialized developmental functions. Immediately after gamete fusion, the sperm-borne PLC-zeta triggers activation, generating intracellular free Ca2+ oscillations. Mutations in the PLC-zeta encoding gene are associated with the absence of this factor in mature sperm and inability to achieve fertilization. Sperm play also a role in the greater game of the choreography of fertilization. In the human, the sperm centrioles are introduced into the oocyte environment with gamete fusion. They interact with the oocyte cytoskeletal apparatus to form a functional pair of centrosomes and ultimately regulate pronuclear juxtaposition in preparation for the first cleavage. As a consequence, the fidelity of chromosome segregation during the first cell divisions depends on the function of sperm centrioles. Sperm DNA integrity is essential for embryo development and health. Damaged DNA does not impact on the sperm fertilization ability following ICSI. However, detrimental effects emerge at pre- and post-implantation stages. Sperm-specific epigenetic factors also play an active role in the regulation of embryonic development, as shown by correlations between reduced embryo morphological quality and incorrect chromatin packaging during spermiogenesis or abnormal methylation of sperm CpG islands. This functional landscape demonstrates that the contribution of the sperm to development goes far beyond its well-established role in fertilization. Clinical studies confirm this view and indicate sperm function as a crucial aspect of research to increase the efficacy of assisted reproduction treatments.
Collapse
|
27
|
Meng X, Melo P, Jones C, Ross C, Mounce G, Turner K, Child T, Coward K. Use of phospholipase C zeta analysis to identify candidates for artificial oocyte activation: a case series of clinical pregnancies and a proposed algorithm for patient management. Fertil Steril 2021; 114:163-174. [PMID: 32622408 DOI: 10.1016/j.fertnstert.2020.02.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the applicability of phospholipase C zeta (PLCζ) analysis in assisting the clinical decision-making process when considering artificial oocyte activation (AOA) for infertile males in assisted reproductive technology. DESIGN Fifty-six males (43 infertile/13 fertile) were screened using our PLCζ assay. SETTING Fertility unit/university laboratory. PATIENT(S) Infertile males with abnormal sperm morphology or total fertilization failure, low fertilization rate (<50%), or repeated fertilization failure in assisted reproductive technology. INTERVENTION(S) We analyzed PLCζ levels in sperm from fertile and infertile males. Eligible patients subsequently underwent intracytoplasmic sperm injection (ICSI)/artificial oocyte activation (AOA) with calcimycin (GM508). MAIN OUTCOME MEASURE(S) PLCζ localization and level and the proportion of sperm expressing PLCζ. Thresholds of PLCζ deficiency, fertilization rates, pregnancy rates, and live birth rates of AOA and non-AOA cycles. RESULT(S) Compared with 13 fertile controls, 34 of the 43 infertile males had significantly lower levels of PLCζ and/or a significantly lower proportion of sperm exhibiting PLCζ. Of these 34 patients, 15 showed a significant PLCζ reduction in both parameters, which we termed "PLCζ deficiency." Five PLCζ-deficient patients opted for AOA; all five achieved fertilization, and four achieved clinical pregnancies and live births. The fertilization rate improved significantly from 18.6% (ICSI) to 56.8% (ICSI/AOA). The clinical pregnancy rate and live birth rate with AOA were both 40% per initiated cycle. Youden index analysis revealed that the cutoffs below which infertile males were likely to benefit from AOA were 71% for the proportion of sperm expressing PLCζ and 15.57 arbitrary units for mean PLCζ level. CONCLUSION(S) PLCζ analysis is a useful diagnostic tool to determine patient eligibility for subsequent AOA treatment.
Collapse
Affiliation(s)
- Xin Meng
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Pedro Melo
- The Women's Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | | | - Ginny Mounce
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Karen Turner
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Oxford, United Kingdom
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Oxford, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
28
|
Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants (Basel) 2021; 10:antiox10030337. [PMID: 33668300 PMCID: PMC7996228 DOI: 10.3390/antiox10030337] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes' competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
- Correspondence:
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
| | - Vincenza Barbato
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Maddalena Di Nardo
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
- Centre for Fertility Preservation, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Riccardo Talevi
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| |
Collapse
|
29
|
Eum JH, Park M, Yoon JA, Yoon SY. Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization. Dev Reprod 2021; 24:297-306. [PMID: 33537516 PMCID: PMC7837419 DOI: 10.12717/dr.2020.24.4.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Repetitive changes in the intracellular calcium concentration
([Ca2+]i) triggers egg activation, including cortical
granule exocytosis, resumption of second meiosis, block to polyspermy, and
initiating embryonic development. [Ca2+]i oscillations that
continue for several hours, are required for the early events of egg activation
and possibly connected to further development to the blastocyst stage. The
sources of Ca2+ ion elevation during [Ca2+]i
oscillations are Ca2+ release from endoplasmic reticulum
through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion
influx through Ca2+ channel on the plasma membrane.
Ca2+ channels have been characterized into
voltage-dependent Ca2+ channels (VDCCs), ligand-gated
Ca2+ channel, and leak-channel. VDCCs expressed on muscle
cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their
activation threshold or their sensitivity to peptide toxins isolated from cone
snails and spiders. The present study was aimed to investigate the localization
pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and
the role in fertilization. [Ca2+]i oscillation was observed in
a Ca2+ contained medium with sperm factor or adenophostin A
injection but disappeared in Ca2+ free medium.
Ca2+ influx was decreased by Lat A. N-VDCC specific
inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i
oscillation profiles in SrCl2 treatment. N or P/Q type VDC were
distributed on the plasma membrane in cortical cluster form, not in the
cytoplasm. Ca2+ influx is essential for
[Ca2+]i oscillation during mammalian fertilization. This
Ca2+ influx might be controlled through the N or P/Q type
VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization
failure or low fertilization eggs in subfertility women.
Collapse
Affiliation(s)
- Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| | - Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, Seoul 06125, Korea
| |
Collapse
|
30
|
Zafar MI, Lu S, Li H. Sperm-oocyte interplay: an overview of spermatozoon's role in oocyte activation and current perspectives in diagnosis and fertility treatment. Cell Biosci 2021; 11:4. [PMID: 33407934 PMCID: PMC7789549 DOI: 10.1186/s13578-020-00520-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
The fertilizing spermatozoon is a highly specialized cell that selects from millions along the female tract until the oocyte. The paternal components influence the oocyte activation during fertilization and are fundamental for normal embryo development; however, the sperm-oocyte interplay is in a continuous debate. This review aims to analyze the available scientific information related to the role of the male gamete in the oocyte activation during fertilization, the process of the interaction of sperm factors with oocyte machinery, and the implications of any alterations in this interplay, as well as the advances and limitations of the reproductive techniques and diagnostic tests. At present, both PLCζ and PAWP are the main candidates as oocyte activated factors during fertilization. While PLCζ mechanism is via IP3, how PAWP activates the oocyte still no clear, and these findings are important to study and treat fertilization failure due to oocyte activation, especially when one of the causes is the deficiency of PLCζ in the sperm. However, no diagnostic test has been developed to establish the amount of PLCζ, the protocol to treat this type of pathologies is broad, including treatment with ionophores, sperm selection improvement, and microinjection with PLCζ protein or RNA.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, People's Republic of China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jeifang Avenue, Wuhan, 430022, People's Republic of China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, Wuhan, 430030, People's Republic of China. .,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan, 430013, People's Republic of China.
| |
Collapse
|
31
|
Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. J Clin Med 2020; 9:jcm9123899. [PMID: 33271815 PMCID: PMC7761017 DOI: 10.3390/jcm9123899] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development of intracytoplasmic sperm injection (ICSI) has helped to circumvent most male infertility conditions. However, there is still a challenging group of infertile males whose sperm, although having normal sperm parameters, are unable to activate the oocyte, even after ICSI treatment. While ICSI generally allows fertilization rates of 70 to 80%, total fertilization failure (FF) still occurs in 1 to 3% of ICSI cycles. Phospholipase C zeta (PLCζ) has been demonstrated to be a critical sperm oocyte activating factor (SOAF) and the absence, reduced, or altered forms of PLCζ have been shown to cause male infertility-related FF. The purpose of this review is to (i) summarize the current knowledge on PLCζ as the critical sperm factor for successful fertilization, as well as to discuss the existence of alternative sperm-induced oocyte activation mechanisms, (ii) describe the diagnostic tests available to determine the cause of FF, and (iii) summarize the beneficial effect of assisted oocyte activation (AOA) to overcome FF.
Collapse
|
32
|
Chimote BN, Chimote NM. Dehydroepiandrosterone sulphate (DHEAS) concentrations stringently regulate fertilisation, embryo development and IVF outcomes: are we looking at a potentially compelling 'oocyte-related factor' in oocyte activation? J Assist Reprod Genet 2020; 38:193-202. [PMID: 33161515 DOI: 10.1007/s10815-020-02001-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Bindu N Chimote
- IVF Embryology Laboratory, Vaunshdhara Fertility Centre, 9, Dr. Munje Marg, Congress Nagar, Nagpur, Maharashtra, India.
| | - Natachandra M Chimote
- Department of Reproductive Endocrinology, Vaunshdhara Fertility Centre, 9, Dr. Munje Marg, Congress Nagar, Nagpur, Maharashtra, India
| |
Collapse
|
33
|
Czajkowska K, Walewska A, Ishikawa T, Szczepańska K, Ajduk A. Age-related alterations in fertilization-induced Ca2+ oscillations depend on the genetic background of mouse oocytes†. Biol Reprod 2020; 103:986-999. [PMID: 32761132 PMCID: PMC7609943 DOI: 10.1093/biolre/ioaa139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022] Open
Abstract
Maternal aging affects various aspects of oocytes' physiology, including the functionality of their nuclear apparatus and mitochondria. In the present paper, we wished to investigate whether advanced reproductive age impacts oocytes' ability to generate proper Ca2+ oscillations in response to monospermic fertilization. We examined three different mouse strains/crosses: inbred C57BL/6Tar, outbred Tar:SWISS, and hybrid F1 (C57BL/6Tar × CBA/Tar). The females were either 2-4 months old (young) or 13-16 months old (aged). We observed that the Ca2+ oscillatory pattern is altered in a strain-dependent manner and changes were more profound in aged C57BL/6Tar and F1 than in aged Tar:SWISS oocytes. We also showed that maternal aging differently affects the size of Ca2+ store and expression of Itpr1, Atp2a2, Erp44, and Pdia3 genes involved in Ca2+ homeostasis in oocytes of C57BL/6Tar, Tar:SWISS, and F1 genetic background, which may explain partially the differences in the extent of age-dependent changes in the Ca2+ oscillations in those oocytes. Maternal aging did not have any visible impact on the distribution of the ER cisterns in oocytes of all three genetic types. Finally, we showed that maternal aging alters the timing of the first embryonic interphase onset and that this timing correlates in C57BL/6Tar and Tar:SWISS oocytes with the frequency of fertilization-induced Ca2+ oscillations. Our results indicate that extreme caution is required when conclusions about oocyte/embryo physiological response to aging are made and complement an increasing amount of evidence that mammalian (including human) susceptibility to aging differs greatly depending on the genetic background of the individual.
Collapse
Affiliation(s)
- Katarzyna Czajkowska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Walewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Nakai M, Ito J, Suyama A, Kageyama A, Tobari Y, Kashiwazaki N. Phospholipase Cζ (PLCζ) versus postacrosomal sheath WW domain-binding protein (PAWP): Which molecule will survive as a sperm factor? Anim Sci J 2020; 91:e13345. [PMID: 32219949 PMCID: PMC7140179 DOI: 10.1111/asj.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 11/27/2022]
Abstract
During mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules; these events are collectively called 'oocyte activation.' In all species studied to date, the transient rise in the cytosolic level of calcium (in particular, the repeated calcium increases called 'calcium oscillations' in mammals) is required for these events. Researchers have focused on identifying the factor(s) that can induce calcium oscillations during fertilization. Sperm‐specific phospholipase C, i.e., PLC zeta (PLCζ), is a strong candidate of the factor(s), and several research groups using different species obtained evidence that PLCζ is a sperm factor that can induce calcium oscillations during fertilization. However, postacrosomal sheath Tryptophan‐Tryptophan (WW)—domain‐binding protein (PAWP) was recently shown to have a pivotal role in inducing calcium oscillations in some species. In this review, we focus on PLCζ and PAWP as sperm factors, and we discuss this controversy: Which of these two molecules survives as a sperm factor?
Collapse
Affiliation(s)
- Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ayumi Suyama
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Atsuko Kageyama
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Yasuko Tobari
- Laboratory of Animal Genetics and Breeding, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
35
|
Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: a Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization? Reprod Sci 2020; 28:639-648. [PMID: 32813196 DOI: 10.1007/s43032-020-00293-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
This paper reviews the effects of calcium oscillatory patterns in oocytes and early embryo development. Total fertilization failure (TFF) is the failure of fertilization in all oocytes in a human IVF cycle, even after treatment with intracytoplasmic sperm injection (ICSI). It is not well understood and currently attributed to oocyte activation deficiency. Calcium signaling is important in oocyte activation events. Calcium oscillations, in particular, have been reported in animal and human oocytes after fertilization. Abnormal calcium oscillations after fertilization may be the principal mechanism for TFF. While studies also establish strong associations between abnormal calcium oscillatory patterns and suboptimal developmental outcomes, critical basic parameters and their mechanism of action have yet to be identified. Empirical use of artificial oocyte activation (AOA) methods has shown initial success in helping patients overcome TFF. The AOA methods attempt to raise calcium levels after fertilization, but the efficacy and safety of these AOA methods are still in early stages of addressing TFF. Additional information about calcium oscillatory patterns and the effects of AOA in human ART may allow the prevention of TFF or allow treatment of TFF patients effectively and safely.
Collapse
|
36
|
Chen W, Bai MZ, Yang Y, Sun D, Wu S, Sun J, Wu Y, Feng Y, Wei Y, Chen Z, Zhang Z. ART strategies in Klinefelter syndrome. J Assist Reprod Genet 2020; 37:2053-2079. [PMID: 32562095 DOI: 10.1007/s10815-020-01818-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/10/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Patients with Klinefelter syndrome (KS) who receive assisted reproductive technology (ART) treatment often experience poor pregnancy rates due to decreased fertilization, cleavage, and implantation rates and even an increased miscarriage rate. Mounting evidence from recent studies has shown that various technological advances and approaches could facilitate the success of ART treatment for KS patients. In this review, we summarize the methods for guiding KS patients during ART and for developing optimal strategies for preserving fertility, improving pregnancy rate and live birth rate, and avoiding the birth of KS infants. METHODS We searched PubMed and Google Scholar publications related to KS patients on topics of controlled ovarian stimulation protocols, sperm extraction, fertility preservation, gamete artificial activation, round spermatid injection (ROSI), and non-invasive prenatal screening (PGD) methods. RESULTS This review outlines the different ovulation-inducing treatments for female partners according to the individual sperm status in the KS patient. We further summarize the methods of retrieving sperm, storing, and freezing rare sperm. We reviewed different methods of gamete artificial activation and discussed the feasibility of ROSI for sterile KS patients who absolutely lack sperm. The activation of eggs in the process of intracytoplasmic sperm injection and non-invasive PGD are urgently needed to prevent the birth of KS infants. CONCLUSION The integrated strategies will pave the way for the establishment of ART treatment approaches and improve the clinical outcome for KS patients.
Collapse
Affiliation(s)
- Wei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ming Zhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yixia Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Di Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Sufang Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jian Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yu Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Youheng Wei
- Institute of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zijiang Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
37
|
Phospholipase C zeta and oocyte activation defects: moving toward the objective identification of patients eligible for artificial oocyte activation. Fertil Steril 2020; 114:77-78. [PMID: 32532496 DOI: 10.1016/j.fertnstert.2020.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022]
|
38
|
Limatola N, Bertocci I, Chun JT, Musco L, Munari M, Caramiello D, Danovaro R, Santella L. Oxygen supersaturation mitigates the impact of the regime of contaminated sediment reworking on sea urchin fertilization process. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104951. [PMID: 32217298 DOI: 10.1016/j.marenvres.2020.104951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Dismissed industrial plants with chronic environmental contamination globally affect all levels of biological organization in concert with other natural and anthropogenic perturbations. Assessing the impact of such perturbations and finding effective ways to mitigate them have clear ecological and societal implications. Through indoor manipulative experiments, we assessed here the effects of the temporal regime of reworking of contaminated sediment from the Bagnoli-Coroglio brownfield (Tyrrhenian Sea, Italy) on the fertilization process in Paracentrotus lividus. Adult sea urchins were kept for one month in tanks containing contaminated sediment that was re-suspended according to two temporal patterns of water turbulence differing in the time intervals between consecutive events of agitation (mimicking the storms naturally occurring in the study area) in seawater with natural vs. supersaturated oxygenation levels. At the end of the treatment, gametes were collected and used to test the hypothesis that the regime of contaminated sediment reworking negatively, but reversibly, affects morphological and physiological traits of the fertilized eggs. We found that aggregated events of sediment re-suspension had profound negative effects on gamete interactions and Ca2+ signaling at fertilization. The same experimental condition also inflicted marked ultrastructural changes in eggs. Importantly, however, such detrimental effects were inhibited by increased oxygenation. By contrast, the regime of sediment re-working with a longer interval between consecutive turbulent events had only marginal effects. Thus, the current and predicted changes of climate-related disturbance appear to modulate the biological effects of chronic contamination in post-industrial areas, suggesting that environmental rehabilitation via restoration of habitat-forming primary producers such as seagrasses or algal canopies could alleviate the pollutants' effects on resident biota.
Collapse
Affiliation(s)
- Nunzia Limatola
- Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, 80121, Italy
| | - Iacopo Bertocci
- Integrative Marine Ecology Department (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I- 80121, Italy; Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, I-56126, Italy
| | - Jong Tai Chun
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I- 80121, Italy
| | - Luigi Musco
- Integrative Marine Ecology Department (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I- 80121, Italy
| | - Marco Munari
- Integrative Marine Ecology Department (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I- 80121, Italy
| | - Davide Caramiello
- Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, 80121, Italy
| | - Roberto Danovaro
- Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, 80121, Italy; Università Politecnica delle Marche, Via Brecce Bianche, Ancona, I-60131, Italy
| | - Luigia Santella
- Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, 80121, Italy.
| |
Collapse
|
39
|
Santella L, Limatola N, Chun JT. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. ZOOLOGICAL LETTERS 2020; 6:5. [PMID: 32313685 PMCID: PMC7158055 DOI: 10.1186/s40851-020-00157-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
ABSTRACT Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature. During the maturation process, immature oocytes of starfish are released from the prophase of the first meiotic division, and acquire the competence to be fertilized through a highly programmed sequence of morphological and physiological changes at the oocyte surface. In addition, the changes in the cortical and nuclear regions are essential for normal and monospermic fertilization. This review summarizes the current state of research on the cortical actin cytoskeleton in mediating structural and physiological changes during oocyte maturation and sperm and egg activation in starfish and sea urchin. The common denominator in these studies with echinoderms is that exquisite rearrangements of the egg cortical actin filaments play pivotal roles in gamete interactions, Ca2+ signaling, exocytosis of cortical granules, and control of monospermic fertilization. In this review, we also compare findings from studies using invertebrate eggs with what is known about the contributions made by the actin cytoskeleton in mammalian eggs. Since the cortical actin cytoskeleton affects microvillar morphology, movement, and positioning of organelles and vesicles, and the topography of the egg surface, these changes have impacts on the fertilization process, as has been suggested by recent morphological studies on starfish oocytes and eggs using scanning electron microscopy. Drawing the parallelism between vitelline layer of echinoderm eggs and the zona pellucida of mammalian eggs, we also discuss the importance of the egg surface in mediating monospermic fertilization. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
40
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
41
|
Artificial oocyte activation to improve reproductive outcomes in couples with various causes of infertility: a retrospective cohort study. Reprod Biomed Online 2020; 40:501-509. [DOI: 10.1016/j.rbmo.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
|
42
|
Type of protein supplement in cryopreservation solutions impacts on the degree of ultrastructural damage in frozen-thawed human oocytes. Cryobiology 2020; 95:143-150. [PMID: 32243889 DOI: 10.1016/j.cryobiol.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022]
Abstract
Protein sources used as supplements of IVF culture media are known to have several implications for the function and stability of embryo culture environment. In fact, they i) transport biologically active molecules ii) chelate heavy metals, iii) regulate media pH, iii) scavenge reactive oxygen species (ROS) and iv) attenuate osmotic stress to which cells are exposed in sub-optimal culture conditions. Instead, their specific relevance to the formulation of cryopreservation solutions used for gamete and embryo cryopreservation remains uncertain. In the present work, we tested the hypothesis that different protein supplements present in cryopreservation solutions, serum or plasma protein solution (PPS), or different concentrations of the same supplement (serum), are associated with different types and/or magnitude of cryopreservation-derived cell damage. To this end, using cryopreservation solutions containing serum or PPS, donated supernumerary human mature oocytes were frozen-thawed by slow freezing and compared with fresh controls. Ultrastructural markers of oocyte quality were adopted as objective measure to assess possible damage from cryopreservation. The study results indicate that the adoption of serum minimises cell damage induced by cryopreservation. Indeed, typical hallmarks of cryodamage in human oocytes, i.e. loss of cortical granules, zona pellucida hardening and above all vacuolization, were largely reduced in oocytes cryopreserved with solutions containing serum, especially if used a higher concentration. This suggest that oocyte cryopreservation still has significant margins of improvement that may derive also from composition of cryopreservation media.
Collapse
|
43
|
McDonough CE, Bernhardt ML, Williams CJ. Mouse strain-dependent egg factors regulate calcium signals at fertilization. Mol Reprod Dev 2020; 87:284-292. [PMID: 31944466 DOI: 10.1002/mrd.23316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/12/2019] [Indexed: 01/29/2023]
Abstract
Calcium (Ca2+ ) signals triggered at fertilization initiate resumption of the cell cycle and initial steps of embryonic development. In mammals, the sperm factor phospholipase Cζ triggers the release of Ca2+ from the endoplasmic reticulum (ER), initiating an oscillatory pattern of Ca2+ transients that is modulated by egg factors including Ca2+ influx channels, Ca2+ transporters, and phosphoinositide-regulating enzymes. Here we compared characteristics of Ca2+ oscillations following in vitro fertilization (IVF) and ER Ca2+ stores among nine common laboratory mouse strains: CF1, C57BL6, SJL, CD1, DBA, FVB, 129X1, BALBc, 129S1, and the F1 hybrid B6129SF1. Sperm from B6SJLF1/J males was used for all IVF experiments. There were significant differences among the strains with respect to duration and maximum amplitude of the first Ca2+ transient, frequency of oscillations, and ER Ca2+ stores. With male strain held constant, the differences in Ca2+ oscillation patterns observed result from variation in egg factors across different mouse strains. Our results support the importance of egg-intrinsic properties in determining Ca2+ oscillation patterns and have important implications for the interpretation and comparison of studies on Ca2+ dynamics at fertilization.
Collapse
Affiliation(s)
- Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Niu X, Ruan Q, Witz CA, Wang W. Comparison of Human Oocyte Activation Between Round-Headed Sperm Injection Followed by Calcium Ionophore Treatment and Normal Sperm Injection in a Patient With Globozoospermia. Front Endocrinol (Lausanne) 2020; 11:183. [PMID: 32318024 PMCID: PMC7154056 DOI: 10.3389/fendo.2020.00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Fertilization failure is common in patients with round-headed sperm, a form of globozoospermia. Artificial oocyte activation is able to assist oocyte fertilization after sperm injection in these patients. Comparisons between oocyte fertilization with or without calcium ionophore have been reported in patients with round-headed sperm. However, no comparison has been reported between round-headed sperm injection followed by calcium ionophone activation and normal sperm injection. In this case report, half of oocytes from a patient were injected with her partner's round-headed sperm followed by calcium ionophore activation, and the other half of oocytes were injected with a donor sperm without calcium ionophore activation. The injected oocytes were cultured to examine fertilization, embryo development, and embryonic aneuploidies in the resulting blastocysts. The fertilization rate was lower in round-headed sperm injected oocytes (3/6) than that in donor sperm injected oocytes (5/6), but rates of blastocyst and aneuploidies were similar in the resulting embryos between the two groups. A euploid blastocyst resulted from round-headed sperm injection was transferred, and a healthy baby was delivered. These results indicate that calcium ionophore treatment can assist oocyte activation in patients with round-headed sperm, but its efficiency to activate oocytes is lower than that induced by a normal sperm injection. However, embryo development and chromosome integrity may not be affected by calcium ionophore treatment.
Collapse
Affiliation(s)
- Xiangli Niu
- Research Center for Reproductive Medicine, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiuyan Ruan
- Research Center for Reproductive Medicine, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Craig A. Witz
- Houston Fertility Institute, Houston, TX, United States
| | - Weihua Wang
- Prelude-Houston Fertility Laboratory, Houston, TX, United States
- *Correspondence: Weihua Wang,
| |
Collapse
|
45
|
Yamamoto Y, Hirose N, Kamimura S, Wakayama S, Ito J, Ooga M, Wakayama T. Production of mouse offspring from inactivated spermatozoa using horse PLCζ mRNA. J Reprod Dev 2019; 66:67-73. [PMID: 31852860 PMCID: PMC7040210 DOI: 10.1262/jrd.2019-043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Improving artificial oocyte activation is essential for assisted reproduction or animal biotechnology that can obtain healthy offspring with a high success rate. Here, we examined whether
intracytoplasmic injection of equine sperm-specific phospholipase C zeta (ePLCζ) mRNA, the PLCζ with the strongest oocyte activation potential in mammals, could improve the mouse oocyte
activation rate and subsequent embryonic development using inactivated spermatozoa. mRNA of mouse PLCζ (mPLCζ) or ePLCζ were injected into mouse oocytes to determine the optimal mRNA
concentration to maximize the oocyte activation rate and developmental rate of parthenogenetic embryos in vitro. Full-term development was examined using NaOH-treated
inactive spermatozoa using the optimal activation method. We found that the most optimal ePLCζ mRNA concentration was 0.1 ng/µl for mouse oocyte activation, which was ten times stronger than
mPLCζ mRNA. The concentration did not affect parthenogenetic embryo development in vitro. Relatively normal blastocysts were obtained with the same developmental rate
(52–53% or 48–51%, respectively) when inactive spermatozoa were injected into activated oocytes using ePLCζ or mPLCζ mRNA injection. However, the birth rate after embryo transfer was
slightly but significantly decreased in oocytes activated by ePLCζ mRNA (24%) compared to mPLCζ mRNA (37%) or strontium treatment (40%) activation. These results suggest that the higher
activation rate does not always correlate the higher birth rate, and some mechanisms might exist in the oocyte activation process that could affect the later developmental stages like
full-term development.
Collapse
Affiliation(s)
- Yunosuke Yamamoto
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan.,Present: Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Kanagawa 252-5201, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
46
|
Bonte D, Thys V, De Sutter P, Boel A, Leybaert L, Heindryckx B. Vitrification negatively affects the Ca 2+-releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod Biomed Online 2019; 40:13-25. [PMID: 31740224 DOI: 10.1016/j.rbmo.2019.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
RESEARCH QUESTION To what extent does vitrification affect the Ca2+-releasing and activation potential of mouse oocytes, which are commonly used to determine the oocyte activation potential of human spermatozoa? DESIGN The effect of mouse oocyte vitrification on Ca2+ dynamics and developmental competence after oocyte activation was assessed and compared with fresh mouse oocytes. Moreover, the Ca2+ store content of the endoplasmic reticulum was determined at different time points during the vitrification-warming procedure. Finally, the Ca2+ pattern induced by cryoprotectant exposure was determined. RESULTS After human sperm injection into mouse oocytes, Ca2+ dynamics but not fertilization rates were significantly altered by vitrification warming (P < 0.05). Ca2+ dynamics in response to SrCl2 or ionomycin were also altered by oocyte vitrification. In contrast, activation and blastocyst rates after SrCl2 exposure were not affected (P > 0.05), whereas activation rates after ionomycin exposure were significantly lower in vitrified-warmed oocytes (P < 0.05); blastocyst rates were not affected (P > 0.05). Cryoprotectant exposure was associated with a strong drop in endoplasmic reticulum Ca2+ store content. Oocytes rapidly recovered during warming and recovery in Ca2+-containing media; a threshold area under the curve of Ca2+ dynamics to obtain activation rates above 90% was determined. CONCLUSIONS Vitrified-warmed mouse oocytes display reduced Ca2+-releasing potential upon oocyte activation, caused by cryoprotectant exposure. With adapted classification criteria, these oocytes could be used for diagnosing oocyte activation deficiencies in patients. Evaluating the Ca2+-signalling machinery in vitrified-warmed human oocytes is required.
Collapse
Affiliation(s)
- Davina Bonte
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium.
| | - Vanessa Thys
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Luc Leybaert
- Physiology group, Department of Basic and Applied Medical Sciences, Ghent University, C. Heymanslaagn 10, GhentGhent 9000, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| |
Collapse
|
47
|
Szpila M, Walewska A, Sabat-Pośpiech D, Strączyńska P, Ishikawa T, Milewski R, Szczepańska K, Ajduk A. Postovulatory ageing modifies sperm-induced Ca 2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Sci Rep 2019; 9:11859. [PMID: 31413272 PMCID: PMC6694115 DOI: 10.1038/s41598-019-48281-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023] Open
Abstract
Postovulatory ageing of mammalian oocytes occurs between their ovulation and fertilization and has been shown to decrease their developmental capabilities. Aged oocytes display numerous abnormalities, including altered Ca2+ signalling. Fertilization-induced Ca2+ oscillations are essential for activation of the embryonic development, therefore maintaining proper Ca2+ homeostasis is crucial for the oocyte quality. In the present paper, we show that the mechanism underlying age-dependent alterations in the pattern of sperm-triggered Ca2+ oscillations is more complex and multifaceted than previously believed. Using time-lapse imaging accompanied by immunostaining and molecular analyses, we found that postovulatory ageing affects the amount of Ca2+ stored in the cell, expression of Ca2+ pump SERCA2, amount of available ATP and distribution of endoplasmic reticulum and mitochondria in a manner often strongly depending on ageing conditions (in vitro vs. in vivo). Importantly, those changes do not have to be caused by oxidative stress, usually linked with the ageing process, as they occur even if the amount of reactive oxygen species remains low. Instead, our results suggest that aberrations in Ca2+ signalling may be a synergistic result of ageing-related alterations of the cell cycle, cytoskeleton, and mitochondrial functionality.
Collapse
Affiliation(s)
- Marcin Szpila
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Walewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Dorota Sabat-Pośpiech
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | - Patrycja Strączyńska
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, pl. Traugutta 2, 41-800, Zabrze, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Szpitalna 37, 15-295, Bialystok, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
48
|
Altered actin cytoskeleton in ageing eggs of starfish affects fertilization process. Exp Cell Res 2019; 381:179-190. [PMID: 31082375 DOI: 10.1016/j.yexcr.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 11/21/2022]
Abstract
Integrity of oocytes is of pivotal interest in the medical and zootechnical practice of in vitro fertilization. With time, oocytes undergo deterioration in quality, and ageing oocytes often exhibit compromised competence in fertilization and the subsequent embryonic development. With ageing oocytes and eggs of starfish (Astropecten aranciacus), we addressed the issue by examining changes of the subcellular structure and their performance at fertilization. Ageing eggs were simulated in two different experimental paradigms: i) oocytes were overmatured by 6 hours stimulation with 1-methyladenine (1-MA); ii) oocytes were removed from the gonad and maintained in seawater for 24 or 48 h before applying the hormonal stimulation (1-MA, 70 min). These eggs were compared with normally matured eggs (stimulated after isolation from the gonad with 1-MA for 70 min) with respect to the sperm-induced intracellular Ca2+ signaling and the structural changes of the egg surface. The cytoskeletal and ultrastructural differences in these eggs were assessed by confocal and transmission electron microscopy, respectively. In the two categories of ageing eggs, we have found remarkable structural modifications of the actin cytoskeleton and the cortical vesicles beneath the plasma membrane. At fertilization, these ageing eggs manifested an altered pattern of intracellular Ca2+ release, aberrant actin dynamics, and increased rate of polyspermy often despite full elevation of the fertilization envelope. Taken together, our results highlight the importance of spatio-temporal regulation of the actin cytoskeleton in the cortex of the eggs, and we postulate that the status of the actin cytoskeleton is one of the major determinants of the oocyte quality that ensures successful monospermic fertilization.
Collapse
|
49
|
Fluks M, Szczepanska K, Ishikawa T, Ajduk A. Transcriptional status of mouse oocytes corresponds with their ability to generate Ca2+ release. Reproduction 2019; 157:465-474. [PMID: 30817322 DOI: 10.1530/rep-18-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
In fully grown ovarian follicles both transcriptionally active (NSN) and inactive (SN) oocytes are present. NSN oocytes have been shown to display lower developmental potential. It is possible that oocytes that have not completed transcription before meiosis resumption accumulate less RNA and proteins required for their further development, including those responsible for regulation of Ca2+ homeostasis. Oscillations of the cytoplasmic concentration of free Ca2+ ions ([Ca2+]i) are triggered in oocytes by a fertilizing spermatozoon and are crucial for inducing and regulating further embryonic development. We showed that NSN-derived oocytes express less inositol 1,4,5-triphosphate receptor type 1 (IP3R1), store less Ca2+ ions and generate weaker spontaneous [Ca2+]i oscillations during maturation than SN oocytes. Consequently, NSN oocytes display aberrant [Ca2+]i oscillations at fertilization. We speculate that this defective regulation of Ca2+ homeostasis might be one of the factors responsible for the lower developmental potential of NSN oocytes.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Ferrer-Buitrago M, Dhaenens L, Lu Y, Bonte D, Vanden Meerschaut F, De Sutter P, Leybaert L, Heindryckx B. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum Reprod 2019; 33:416-425. [PMID: 29329390 DOI: 10.1093/humrep/dex376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? SUMMARY ANSWER ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. WHAT IS KNOWN ALREADY Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. STUDY DESIGN, SIZE, DURATION Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. MAIN RESULTS AND THE ROLE OF CHANCE M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome fertilization failure in patients showing normal capacity to generate Ca2+ oscillations in H-OCA and was likely to be beneficial in cases displaying abnormal H-OCA Ca2+ oscillations patterns. LIMITATIONS, REASONS FOR CAUTION The scarce availability of human oocytes donated for research purposes is a limiting factor to perform H-OCA. Ca2+ imaging requires specific equipment to monitor fluorescence changes over time. WIDER IMPLICATIONS OF THE FINDINGS H-OCA is a sensitive test to diagnose gamete-linked fertilization failure. H-OCA allows treatment counseling for couples experiencing ICSI failures to either undergo ICSI-AOA or to participate in gamete donation programs. The present data provide an important template of the Ca2+ signature observed during human fertilization in cases with normal, low and failed fertilization after conventional ICSI. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Flemish fund for scientific research (FWO-Vlaanderen, G060615N). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- M Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Y Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - F Vanden Meerschaut
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|