1
|
Webster AK, Willis JH, Johnson E, Sarkies P, Phillips PC. Gene expression variation across genetically identical individuals predicts reproductive traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.13.562270. [PMID: 37873136 PMCID: PMC10592811 DOI: 10.1101/2023.10.13.562270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In recent decades, genome-wide association studies (GWAS) have been the major approach to understand the biological basis of individual differences in traits and diseases. However, GWAS approaches have limited predictive power to explain individual differences, particularly for complex traits and diseases in which environmental factors play a substantial role in their etiology. Indeed, individual differences persist even in genetically identical individuals, although fully separating genetic and environmental causation is difficult in most organisms. To understand the basis of individual differences in the absence of genetic differences, we measured two quantitative reproductive traits in 180 genetically identical young adult Caenorhabditis elegans roundworms in a shared environment and performed single-individual transcriptomics on each worm. We identified hundreds of genes for which expression variation was strongly associated with reproductive traits, some of which depended on individuals' historical environments and some of which was random. Multiple small sets of genes together were highly predictive of reproductive traits, explaining on average over half and over a quarter of variation in the two traits. We manipulated mRNA levels of predictive genes to identify a set of causal genes, demonstrating the utility of this approach for both prediction and understanding underlying biology. Finally, we found that the chromatin environment of predictive genes was enriched for H3K27 trimethylation, suggesting that gene expression variation may be driven in part by chromatin structure. Together, this work shows that individual, non-genetic differences in gene expression are both highly predictive and causal in shaping reproductive traits.
Collapse
|
2
|
Cardona AH, Ecsedi S, Khier M, Yi Z, Bahri A, Ouertani A, Valero F, Labrosse M, Rouquet S, Robert S, Loubat A, Adekunle D, Hubstenberger A. Self-demixing of mRNA copies buffers mRNA:mRNA and mRNA:regulator stoichiometries. Cell 2023; 186:4310-4324.e23. [PMID: 37703874 DOI: 10.1016/j.cell.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.
Collapse
Affiliation(s)
| | - Szilvia Ecsedi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Mokrane Khier
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Zhou Yi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Alia Bahri
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Amira Ouertani
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Florian Valero
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | - Sami Rouquet
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Stéphane Robert
- Université Aix Marseille, Inserm, INRAE, C2VN, 13005 Marseille, France
| | - Agnès Loubat
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | | |
Collapse
|
3
|
Mammalian pumilio proteins control cellular morphology, migration, and adhesion. Sci Rep 2023; 13:3002. [PMID: 36810759 PMCID: PMC9944931 DOI: 10.1038/s41598-023-30004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Pumilio proteins are RNA-binding proteins that control mRNA translation and stability by binding to the 3' UTR of target mRNAs. Mammals have two canonical Pumilio proteins, PUM1 and PUM2, which are known to act in many biological processes, including embryonic development, neurogenesis, cell cycle regulation and genomic stability. Here, we characterized a new role of both PUM1 and PUM2 in regulating cell morphology, migration, and adhesion in T-REx-293 cells, in addition to previously known defects in growth rate. Gene ontology analysis of differentially expressed genes in PUM double knockout (PDKO) cells for both cellular component and biological process showed enrichment in categories related to adhesion and migration. PDKO cells had a collective cell migration rate significantly lower than that of WT cells and displayed changes in actin morphology. In addition, during growth, PDKO cells aggregated into clusters (clumps) due to an inability to escape cell-cell contacts. Addition of extracellular matrix (Matrigel) alleviated the clumping phenotype. Collagen IV (ColIV), a major component of Matrigel, was shown to be the driving force in allowing PDKO cells to monolayer appropriately, however, ColIV protein levels remained unperturbed in PDKO cells. This study characterizes a novel cellular phenotype associated with cellular morphology, migration, and adhesion which can aid in developing better models for PUM function in both developmental processes and disease.
Collapse
|
4
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
5
|
Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence. FASEB J 2020; 34:7561-7577. [PMID: 32281204 DOI: 10.1096/fj.201902630r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Abstract
Elucidation of host-pathogen interaction is essential for developing effective strategies to combat bacterial infection. Dual RNA-Seq using cultured cells or tissues/organs as the host of pathogen has emerged as a novel strategy to understand the responses concurrently from both pathogen and host at cellular level. However, bacterial infection mostly causes systematic responses from the host at organism level where the interplay is urgently to be understood but inevitably being neglected by the current practice. Here, we developed an approach that simultaneously monitor the genome-wide infection-linked transcriptional alterations in both pathogenic Vibrio parahaemolyticus and the infection host nematode Caenorhabditis elegans. Besides the dynamic alterations in transcriptomes of both C. elegans and V. parahaemolyticus during infection, we identify a two-component system, BarA/UvrY, that is important for virulence in host. BarA/UvrY not only controls the virulence factors in V. parahaemolyticus including Type III and Type VI secretion systems, but also attenuates innate immune responses in C. elegans, including repression on the MAP kinase-mediated cascades. Thus, our study exemplifies the use of dual RNA-Seq at organism level to uncover previously unrecognized interplay between host and pathogen.
Collapse
Affiliation(s)
- Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | | | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Bo Peng
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Macau SAR, China
| |
Collapse
|
6
|
Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol Biol Rep 2019; 47:785-807. [PMID: 31643042 DOI: 10.1007/s11033-019-05142-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The Pumilio (Pum)/Puf family proteins are ubiquitously present across eukaryotes, including yeast, plants and humans. They generally bind to the 3' untranslated regions of single stranded RNA targets in a sequence specific manner and destabilize them, although a few reports suggest their role in stabilizing the target transcripts. The Pum isoforms are implicated in a wide array of biological processes including stem cell maintenance, development, ribosome biogenesis as well as human diseases. Further studies on Pum would be interesting and important to understand their evolutionarily conserved and divergent features across species, which can have potential implications in medicine, plant sciences as well as basic molecular and cell biological studies. A large number of research reports exists, pertaining to various aspects of Pum, in individual experimental systems. This review is a comprehensive summary of the functions, types, mechanism of action as well as the regulation of Pum in various species. Also, the research questions to be addressed in future are discussed.
Collapse
|
7
|
De Graeve F, Debreuve E, Rahmoun S, Ecsedi S, Bahri A, Hubstenberger A, Descombes X, Besse F. Detecting and quantifying stress granules in tissues of multicellular organisms with the Obj.MPP analysis tool. Traffic 2019; 20:697-711. [PMID: 31314165 DOI: 10.1111/tra.12678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Stress granules (SGs) are macromolecular assemblies induced by stress and composed of proteins and mRNAs stalled in translation initiation. SGs play an important role in the response to stress and in the modulation of signaling pathways. Furthermore, these structures are related to the pathological ribonucleoprotein (RNP) aggregates found in neurodegenerative disease contexts, highlighting the need to understand how they are formed and recycled in normal and pathological contexts. Although genetically tractable multicellular organisms have been key in identifying modifiers of RNP aggregate toxicity, in vivo analysis of SG properties and regulation has lagged behind, largely due to the difficulty of detecting SG from images of intact tissues. Here, we describe the object detector software Obj.MPP and show how it overcomes the limits of classical object analyzers to extract the properties of SGs from wide-field and confocal images of Caenorhabditis elegans and Drosophila tissues, respectively. We demonstrate that Obj.MPP enables the identification of genes modulating the assembly of endogenous and pathological SGs, and thus that it will be useful in the context of future genetic screens and in vivo studies.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Eric Debreuve
- Université Côte d'Azur, CNRS, INRIA, I3S, Sophia-Antipolis, France
| | - Somia Rahmoun
- Université Coôte d'Azur, INRIA, CNRS, I3S, Sophia-Antipolis, France
| | - Szilvia Ecsedi
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Alia Bahri
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Arnaud Hubstenberger
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Xavier Descombes
- Université Coôte d'Azur, INRIA, CNRS, I3S, Sophia-Antipolis, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
8
|
Liang X, Hart KJ, Dong G, Siddiqui FA, Sebastian A, Li X, Albert I, Miao J, Lindner SE, Cui L. Puf3 participates in ribosomal biogenesis in malaria parasites. J Cell Sci 2018; 131:jcs.212597. [PMID: 29487181 DOI: 10.1242/jcs.212597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the Puf family gene member Puf3 in the malaria parasites Plasmodium falciparum and Plasmodium yoelii Secondary structure prediction suggested that the RNA-binding domains of the Puf3 proteins consisted of 11 pumilio repeats that were similar to those in the human Puf-A (also known as PUM3) and Saccharomyces cerevisiae Puf6 proteins, which are involved in ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii (Py)Puf3 could be genetically disrupted, suggesting they may be essential for the intraerythrocytic developmental cycle. Cellular fractionation of PfPuf3 in the asexual stages revealed preferential partitioning to the nuclear fraction, consistent with nuclear localization of PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. We found, however, that PyPuf3 changed its localization from being nucleolar to being present in cytosolic puncta in the mosquito and liver stages, which may reflect alternative functions in these stages. Affinity purification of molecules that associated with a PTP-tagged variant of PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an enrichment of 28S rRNA and internal transcribed spacer 2 sequences. Taken together, these results suggest an essential function for PfPuf3 in ribosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc Natl Acad Sci U S A 2018; 115:E2772-E2781. [PMID: 29496961 DOI: 10.1073/pnas.1715439115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.
Collapse
|
10
|
Azizi H, Dumas C, Papadopoulou B. The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in Leishmania. RNA (NEW YORK, N.Y.) 2017; 23:1874-1885. [PMID: 28877997 PMCID: PMC5689007 DOI: 10.1261/rna.062950.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Leishmania and other trypanosomatid protozoa lack control at the level of transcription initiation and regulate gene expression exclusively post-transcriptionally. We have reported previously that Leishmania harbors a unique class of short interspersed degenerate retroposons (SIDERs) that are predominantly located within 3'UTRs and play a major role in post-transcriptional control. We have shown that members of the SIDER2 subfamily initiate mRNA decay through endonucleolytic cleavage within the second conserved 79-nt signature sequence of SIDER2 retroposons. Here, we have developed an optimized MS2 coat protein tethering system to capture trans-acting factor(s) regulating SIDER2-mediated mRNA decay. Tethering of the MS2 coat protein to a reporter RNA harboring two MS2 stem-loop aptamers and the cognate SIDER2-containing 3'UTR in combination with immunoprecipitation and mass spectrometry analysis led to the identification of RNA-binding proteins with known functions in mRNA decay. Among the candidate SIDER2-interacting proteins that were individually tethered to a SIDER2 reporter RNA, the Pumilio-domain protein PUF6 was shown to enhance degradation and reduce transcript half-life. Furthermore, we showed that PUF6 binds to SIDER2 sequences that include the regulatory 79-nt signature motif, hence contributing to the mRNA decay process. Consistent with a role of PUF6 in SIDER2-mediated decay, genetic inactivation of PUF6 resulted in increased accumulation and higher stability of endogenous SIDER2-bearing transcripts. Overall, these studies provide new insights into regulated mRNA decay pathways in Leishmania controlled by SIDER2 retroposons and propose a broader role for PUF proteins in mRNA decay within the eukaryotic kingdom.
Collapse
Affiliation(s)
- Hiva Azizi
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| |
Collapse
|
11
|
Tamburino AM, Kaymak E, Shrestha S, Holdorf AD, Ryder SP, Walhout AJM. PRIMA: a gene-centered, RNA-to-protein method for mapping RNA-protein interactions. ACTA ACUST UNITED AC 2017; 5:e1295130. [PMID: 28702278 DOI: 10.1080/21690731.2017.1295130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Interactions between RNA binding proteins (RBPs) and mRNAs are critical to post-transcriptional gene regulation. Eukaryotic genomes encode thousands of mRNAs and hundreds of RBPs. However, in contrast to interactions between transcription factors (TFs) and DNA, the interactome between RBPs and RNA has been explored for only a small number of proteins and RNAs. This is largely because the focus has been on using 'protein-centered' (RBP-to-RNA) interaction mapping methods that identify the RNAs with which an individual RBP interacts. While powerful, these methods cannot as of yet be applied to the entire RBPome. Moreover, it may be desirable for a researcher to identify the repertoire of RBPs that can interact with an mRNA of interest-in a 'gene-centered' manner-yet few such techniques are available. Here, we present Protein-RNA Interaction Mapping Assay (PRIMA) with which an RNA 'bait' can be tested versus multiple RBP 'preys' in a single experiment. PRIMA is a translation-based assay that examines interactions in the yeast cytoplasm, the cellular location of mRNA translation. We show that PRIMA can be used with small RNA elements, as well as with full-length Caenorhabditis elegans 3' UTRs. PRIMA faithfully recapitulated numerous well-characterized RNA-RBP interactions and also identified novel interactions, some of which were confirmed in vivo. We envision that PRIMA will provide a complementary tool to expand the depth and scale with which the RNA-RBP interactome can be explored.
Collapse
Affiliation(s)
- Alex M Tamburino
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shaleen Shrestha
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy D Holdorf
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
13
|
Abstract
RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
14
|
Kaymak E, Farley BM, Hay SA, Li C, Ho S, Hartman DJ, Ryder SP. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using library MosSCI. Dev Dyn 2016; 245:925-36. [PMID: 27294288 PMCID: PMC4981527 DOI: 10.1002/dvdy.24426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In C. elegans, germline development and early embryogenesis rely on posttranscriptional regulation of maternally transcribed mRNAs. In many cases, the 3' untranslated region (UTR) is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3'UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. RESULTS In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RNA-binding proteins that control the expression pattern of five different maternal mRNAs. CONCLUSIONS The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. Developmental Dynamics 245:925-936, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M. Farley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Samantha A. Hay
- Virginia Commonwealth University School of Medicine, VA, USA
| | - Chihua Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Samantha Ho
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
15
|
Hubstenberger A, Cameron C, Noble SL, Keenan S, Evans TC. Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. J Cell Biol 2015; 211:703-16. [PMID: 26527741 PMCID: PMC4639854 DOI: 10.1083/jcb.201504044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
Modifiers of aberrant solid RNP granules suggest new insights into pathways that control dynamics of large-scale RNP bodies and mRNAs during C. elegans oogenesis. Ribonucleoproteins (RNPs) often coassemble into supramolecular bodies with regulated dynamics. The factors controlling RNP bodies and connections to RNA regulation are unclear. During Caenorhabditis elegans oogenesis, cytoplasmic RNPs can transition among diffuse, liquid, and solid states linked to mRNA regulation. Loss of CGH-1/Ddx6 RNA helicase generates solid granules that are sensitive to mRNA regulators. Here, we identified 66 modifiers of RNP solids induced by cgh-1 mutation. A majority of genes promote or suppress normal RNP body assembly, dynamics, or metabolism. Surprisingly, polyadenylation factors promote RNP coassembly in vivo, suggesting new functions of poly(A) tail regulation in RNP dynamics. Many genes carry polyglutatmine (polyQ) motifs or modulate polyQ aggregation, indicating possible connections with neurodegenerative disorders induced by CAG/polyQ expansion. Several RNP body regulators repress translation of mRNA subsets, suggesting that mRNAs are repressed by multiple mechanisms. Collectively, these findings suggest new pathways of RNP modification that control large-scale coassembly and mRNA activity during development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Pierre-and-Marie-Curie University, University Paris 06, 75005 Paris, France
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Graduate Program in Molecular Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean Keenan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
16
|
Spike CA, Coetzee D, Nishi Y, Guven-Ozkan T, Oldenbroek M, Yamamoto I, Lin R, Greenstein D. Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans. Genetics 2014; 198:1513-33. [PMID: 25261697 PMCID: PMC4256769 DOI: 10.1534/genetics.114.168823] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023] Open
Abstract
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
17
|
Millonigg S, Minasaki R, Nousch M, Eckmann CR. GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line. PLoS Genet 2014; 10:e1004647. [PMID: 25254367 PMCID: PMC4177745 DOI: 10.1371/journal.pgen.1004647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022] Open
Abstract
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. Throughout adulthood, animal tissue homeostasis requires adult stem cell activities. A tight balance between self-renewal and differentiation protects against tissue overgrowth or loss. This balance is strongly influenced by niche-mediated signaling pathways that primarily trigger a transcriptional response in stem cells to promote self-renewal/proliferation. However, the cell-intrinsic mechanisms that modulate signaling pathways to promote proliferation or differentiation are poorly understood. Recently, post-transcriptional mRNA regulation emerged in diverse germline stem cell systems as an important gene expression mechanism, primarily preventing the protein synthesis of factors that promote the switch to differentiation. In the adult C. elegans germ line, this study finds that the evolutionarily conserved cytoplasmic poly(A) polymerase, GLD-4, plays an crucial role in maintaining a healthy balance between proliferation and differentiation forces. This is in part due to translational activation of the mRNA that encodes the germ cell-expressed Notch signaling receptor, an essential regulator of proliferation. Moreover, GLD-4 activity is part of a redundant genetic network downstream of Notch that, together with several other conserved mRNA regulators, promotes differentiation onset. Given the widespread expression of these conserved RNA regulators in metazoans, cell fate balances that are reinforced by translational activation and repression circuitries may therefore be a general mechanism of adult tissue maintenance.
Collapse
Affiliation(s)
- Sophia Millonigg
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Christian R. Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- * E-mail:
| |
Collapse
|
18
|
Doh JH, Jung Y, Reinke V, Lee MH. C. elegans RNA-binding protein GLD-1 recognizes its multiple targets using sequence, context, and structural information to repress translation. WORM 2014; 2:e26548. [PMID: 24744981 DOI: 10.4161/worm.26548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans GLD-1, a maxi-KH motif containing RNA-binding protein, has various functions mainly during female germ cell development, suggesting that it likely controls the expression of a selective group of maternal mRNAs. To gain an insight into how GLD-1 specifically recognizes these mRNA targets, we identified 38 biochemically proven GLD-1 binding regions from multiple mRNA targets that are among over 100 putative targets co-immunoprecipitated with GLD-1. The sequence information of these regions revealed three over-represented and phylogenetically conserved sequence motifs. We found that two of the motifs, one of which is novel, are important for GLD-1 binding in several GLD-1 binding regions but not in other regions. Further analyses indicate that the importance of one of the sequence motifs is dependent on two aspects: (1) surrounding sequence information, likely acting as an accessory feature for GLD-1 to efficiently select the sequence motif and (2) RNA secondary structural environment where the sequence motif resides, which likely provides "binding-site accessibility" for GLD-1 to effectively recognize its targets. Our data suggest some mRNAs recruit GLD-1 by a distinct mechanism, which involves more than one sequence motif that needs to be embedded in the correct context and structural environment.
Collapse
Affiliation(s)
- Jung H Doh
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Yuchae Jung
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Valerie Reinke
- Department of Genetics; Yale University School of Medicine; New Haven, CT USA
| | - Min-Ho Lee
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| |
Collapse
|
19
|
Hubstenberger A, Noble SL, Cameron C, Evans TC. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev Cell 2014; 27:161-173. [PMID: 24176641 DOI: 10.1016/j.devcel.2013.09.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
Like membranous organelles, large-scale coassembly of macromolecules can organize functions in cells. Ribonucleoproteins (RNPs) can form liquid or solid aggregates, but control and consequences of these RNP states in living, developing tissue are poorly understood. Here, we show that regulated RNP factor interactions drive transitions among diffuse, semiliquid, or solid states to modulate RNP sorting and exchange in the Caenorhabditis elegans oocyte cytoplasm. Translation repressors induce an intrinsic capacity of RNP components to coassemble into either large semiliquids or solid lattices, whereas a conserved RNA helicase prevents polymerization into nondynamic solids. Developmental cues dramatically alter both fluidity and sorting within large RNP assemblies, inducing a transition from RNP segregation in quiescent oocytes to dynamic exchange in the early embryo. Therefore, large-scale organization of gene expression extends to the cytoplasm, where regulation of supramolecular states imparts specific patterns of RNP dynamics.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Liu Q, Haag ES. Evolutionarily dynamic roles of a PUF RNA-binding protein in the somatic development of Caenorhabditis briggsae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:129-41. [PMID: 24254995 DOI: 10.1002/jez.b.22550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 11/12/2022]
Abstract
Gene duplication and divergence has emerged as an important aspect of developmental evolution. The genomes of Caenorhabditis nematodes encode an ancient family of PUF RNA-binding proteins. Most have been implicated in germline development, and are often redundant with paralogs of the same sub-family. An exception is Cbr-puf-2 (one of three Caenorhabditis briggsae PUF-2 sub-family paralogs), which is required for development past the second larval stage. Here, we provide a detailed functional characterization of Cbr-puf-2. The larval arrest of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacterial food, which leads to starvation. Cbr-puf-2 is required for the normal grinding cycle of the muscular terminal bulb during early larval stages, and is transiently expressed in this tissue. In addition, rescue of larval arrest reveals that Cbr-puf-2 also promotes normal vulval development. It is expressed in the anchor cell (which induces vulval fate) and vulval muscles, but not in the vulva precursor cells (VPCs) themselves. This contrasts with the VPC-autonomous repression of vulval development described for the Caenorhabditis elegans homologs fbf-1/2. These different roles for PUF proteins occur even as the vulva and pharynx maintain highly conserved anatomies across Caenorhabditis, indicating pervasive developmental system drift (DSD). Because Cbr-PUF-2 shares RNA-binding specificity with its paralogs and with C. elegans FBF, we suggest that functional novelty of RNA-binding proteins evolves through changes in the site of their expression, perhaps in concert with cis-regulatory evolution in target mRNAs.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
21
|
Kaymak E, Ryder SP. RNA recognition by the Caenorhabditis elegans oocyte maturation determinant OMA-1. J Biol Chem 2013; 288:30463-30472. [PMID: 24014033 DOI: 10.1074/jbc.m113.496547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that OMA-1/2 are required to repress the expression of a glp-1 3'-UTR reporter in developing oocytes. OMA-1 binds with high affinity to a conserved region of the glp-1 3'-UTR previously shown to interact with POS-1 and GLD-1, RNA-binding proteins required for glp-1 reporter repression in the posterior of fertilized embryos. Our results reveal that OMA-1 is a sequence-specific RNA-binding protein required to repress expression of maternal transcripts during oogenesis and suggest that interplay between OMA-1 and other factors for overlapping binding sites helps to coordinate the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Ebru Kaymak
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sean P Ryder
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
22
|
Using Caenorhabditis to Explore the Evolution of the Germ Line. GERM CELL DEVELOPMENT IN C. ELEGANS 2013; 757:405-25. [DOI: 10.1007/978-1-4614-4015-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Translational control in the Caenorhabditis elegans germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:205-47. [PMID: 22872479 DOI: 10.1007/978-1-4614-4015-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.
Collapse
|
24
|
Farley BM, Ryder SP. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site cluster. Mol Biol Cell 2012; 23:4473-83. [PMID: 23034181 PMCID: PMC3510010 DOI: 10.1091/mbc.e12-03-0216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RNA-binding proteins (RBPs) coordinate cell fate specification and differentiation in a variety of systems. RNA regulation is critical during oocyte development and early embryogenesis, in which RBPs control expression from maternal mRNAs encoding key cell fate determinants. The Caenorhabditis elegans Notch homologue glp-1 coordinates germline progenitor cell proliferation and anterior fate specification in embryos. A network of sequence-specific RBPs is required to pattern GLP-1 translation. Here, we map the cis-regulatory elements that guide glp-1 regulation by the CCCH-type tandem zinc finger protein POS-1 and the STAR-domain protein GLD-1. Our results demonstrate that both proteins recognize the glp-1 3' untranslated region (UTR) through adjacent, overlapping binding sites and that POS-1 binding excludes GLD-1 binding. Both factors are required to repress glp-1 translation in the embryo, suggesting that they function in parallel regulatory pathways. It is intriguing that two equivalent POS-1-binding sites are present in the glp-1 3' UTR, but only one, which overlaps with a translational derepression element, is functional in vivo. We propose that POS-1 regulates glp-1 mRNA translation by blocking access of other RBPs to a key regulatory sequence.
Collapse
Affiliation(s)
- Brian M Farley
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
25
|
PUF-8, a Pumilio homolog, inhibits the proliferative fate in the Caenorhabditis elegans germline. G3-GENES GENOMES GENETICS 2012; 2:1197-205. [PMID: 23050230 PMCID: PMC3464112 DOI: 10.1534/g3.112.003350] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/06/2012] [Indexed: 01/10/2023]
Abstract
Stem cell populations are maintained by keeping a balance between self-renewal (proliferation) and differentiation of dividing stem cells. Within the Caenorhabditis elegans germline, the key regulator maintaining this balance is the canonical Notch signaling pathway, with GLP-1/Notch activity promoting the proliferative fate. We identified the Pumilio homolog, PUF-8, as an inhibitor of the proliferative fate of stem cells in the C. elegans germline. puf-8(0) strongly enhances overproliferation of glp-1(gf) mutants and partially suppresses underproliferation of a weak glp-1(lf) mutant. The germline tumor that is formed in a puf-8(0); glp-1(gf) double mutant is due to a failure of germ cells to enter meiotic prophase. puf-8 likely inhibits the proliferative fate through negatively regulating GLP-1/Notch signaling or by functioning parallel to it.
Collapse
|
26
|
Hubstenberger A, Cameron C, Shtofman R, Gutman S, Evans TC. A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans. Dev Biol 2012; 366:218-31. [PMID: 22542599 PMCID: PMC3361503 DOI: 10.1016/j.ydbio.2012.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/21/2012] [Accepted: 03/19/2012] [Indexed: 11/16/2022]
Abstract
Cell differentiation requires integration of gene expression controls with dynamic changes in cell morphology, function, and control. Post-transcriptional mRNA regulation and signaling systems are important to this process but their mechanisms and connections are unclear. During C. elegans oogenesis, we find that two groups of PUF RNA binding proteins (RNABPs), PUF-3/11 and PUF-5/6/7, control different specific aspects of oocyte formation. PUF-3/11 limits oocyte growth, while PUF-5/6/7 promotes oocyte organization and formation. These two PUF groups repress mRNA translation through overlapping but distinct sets of 3' untranslated regions (3'UTRs). Several PUF-dependent mRNAs encode other mRNA regulators suggesting both PUF groups control developmental patterning of mRNA regulation circuits. Furthermore, we find that the Ras-MapKinase/ERK pathway functions with PUF-5/6/7 to repress specific mRNAs and control oocyte organization and growth. These results suggest that diversification of PUF proteins and their integration with Ras-MAPK signaling modulates oocyte differentiation. Together with other studies, these findings suggest positive and negative interactions between the Ras-MAPK system and PUF RNA-binding proteins likely occur at multiple levels. Changes in these interactions over time can influence spatiotemporal patterning of tissue development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Rebecca Shtofman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Shiri Gutman
- Program in Cell biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora CO 80045
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Thomas C. Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| |
Collapse
|
27
|
Genome-wide analysis of GLD-1-mediated mRNA regulation suggests a role in mRNA storage. PLoS Genet 2012; 8:e1002742. [PMID: 22693456 PMCID: PMC3364957 DOI: 10.1371/journal.pgen.1002742] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/18/2012] [Indexed: 11/28/2022] Open
Abstract
Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are “stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1–dependent repression prevents precocious translation of OET–promoting mRNAs. Secondly, GLD-1– and CGH-1–dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET–promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised. One of the most striking developmental events is the oocyte-to-embryo transition that, in the absence of Pol II–dependent transcription, depends on regulated translation of maternal mRNAs. Prior to their activation, these maternal mRNAs need to be “stored" in the egg cytoplasm in a repressed but stable form. Surprisingly little is known about how the stored mRNAs are stabilized. The STAR family of RNA–binding proteins includes the C. elegans GLD-1, which controls many aspects of germ cell development. To obtain a comprehensive picture of GLD-1–dependent mRNA regulation, we performed a genome-wide survey of translational repression and mRNA stability of GLD-1 targets. This uncovered a potential role of GLD-1 in mRNA storage, as we found that GLD-1 both represses and stabilizes a subpopulation of its targets. The stabilization also involves a DDX6-like RNA helicase, CGH-1, which is a component of repressive germ granules and processing bodies. Remarkably, the GLD-1 and CGH-1 stabilized mRNAs encode regulators of the oocyte-to-embryo transition, providing an insight into how these functionally related mRNAs are specifically stabilized during germ cell formation. These findings have potential implications for oocyte quality and reproductive fitness, and for mRNA storage in other cell types such as neurons.
Collapse
|
28
|
Liu Q, Stumpf C, Thomas C, Wickens M, Haag ES. Context-dependent function of a conserved translational regulatory module. Development 2012; 139:1509-21. [PMID: 22399679 DOI: 10.1242/dev.070128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modification of transcriptional regulation is a well-documented evolutionary mechanism in both plants and animals, but post-transcriptional controls have received less attention. The derived hermaphrodite of C. elegans has regulated spermatogenesis in an otherwise female body. The PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1. Here, we examine the function of PUF homologs from other Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex determination role. Surprisingly, this is to promote, rather than limit, hermaphrodite spermatogenesis. We provide genetic, molecular and biochemical evidence that Cbr-puf-2 and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts to limit, rather than promote, XX spermatogenesis. As with gld-1, no sex determination function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis. These results indicate that PUF family genes were co-opted for sex determination in each hermaphrodite via their long-standing association with gld-1, and that their precise sex-determining roles depend on the species-specific context in which they act. Finally, we document non-redundant roles for Cbr-puf-2 in embryonic and early larval development, the latter role being essential. Thus, recently duplicated PUF paralogs have already acquired distinct functions.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
29
|
Costa EP, Campos E, de Andrade CP, Façanha AR, Saramago L, Masuda A, da Silva Vaz I, Fernandez JH, Moraes J, Logullo C. Partial characterization of an atypical family I inorganic pyrophosphatase from cattle tick Rhipicephalus (Boophilus) microplus. Vet Parasitol 2012; 184:238-47. [DOI: 10.1016/j.vetpar.2011.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
30
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
31
|
Johnston WL, Dennis JW. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 2011; 50:333-49. [PMID: 22083685 DOI: 10.1002/dvg.20823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
In egg-laying animals, embryonic development takes place within the highly specialized environment provided by the eggshell and its underlying extracellular matrix. Far from being simply a passive physical support, the eggshell is a key player in many early developmental events. Herein, we review current understanding of eggshell structure, biosynthesis, and function in zygotic development of the nematode, C. elegans. Beginning at sperm contact or entry, eggshell layers are produced sequentially. The earlier outer layers are required for secretion or organization of inner layers, and layers differ in composition and function. Developmental events that depend on the eggshell include polyspermy barrier generation, high fidelity meiotic chromosome segregation, osmotic barrier synthesis, polar body extrusion, anterior-posterior polarization, and organization of membrane and cortical proteins. The C. elegans eggshell is proving to be an excellent, tractable system to study the molecular cues of the extracellular matrix that instruct cell polarity and early development.
Collapse
Affiliation(s)
- Wendy L Johnston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | |
Collapse
|
32
|
Identification and characterization of the pumilio-2 expressed in zebrafish embryos and adult tissues. Mol Biol Rep 2011; 39:2811-9. [PMID: 21660475 DOI: 10.1007/s11033-011-1040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/04/2011] [Indexed: 12/13/2022]
Abstract
Pumilio proteins regulate the translation of specific proteins required for germ cell development and morphogenesis. In the present study, we have identified the pumilio-2 in zebrafish and analyze its expression in adult tissues and early embryos. Pumilio-2 codes for the full-length Pumilio-2 protein and contains a PUF-domain. When compared to the mammalian and avian Pumilio-2 proteins, zebrafish Pumilio-2 protein was found to contain an additional sequence of 24 amino acid residues within the PUF-domain. Zebrafish pumilio-2 mRNA is expressed in the ovary, testis, liver, kidney and brain but is absent in the heart and muscle as detected by RT-PCR. The results of in situ hybridization indicate that transcripts of pumilio-2 are distributed in all blastomeres from the 1-cell stage to the sphere stage and accumulate in the head and tail during the 60%-epiboly and 3-somite stages. Transcripts were also detected in the brain and neural tube of the 24 h post-fertilization (hpf) embryos. Western blot analyses indicate that the Pumilio-2 protein is strongly expressed in the ovary, testis and brain but not in other tissues. These data suggest that pumilio-2 plays an important role in the development of the zebrafish germ cells and nervous system.
Collapse
|
33
|
Zhang CD, Pan MH, Tan J, Li FF, Zhang J, Wang TT, Lu C. Characteristics and evolution of the PUF gene family in Bombyx mori and 27 other species. Mol Biol Rep 2011; 39:675-83. [PMID: 21598114 DOI: 10.1007/s11033-011-0785-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/29/2011] [Indexed: 11/24/2022]
Abstract
The Pumilio protein is the founding member of the PUF family of RNA-binding proteins, which contains 8 repeat Puf domains and plays important roles during embryogenesis and post-embryogenesis by binding the Nanos response element (NRE) of specific target genes in eukaryotes. In addition, many other proteins containing the Puf domain were identified but with different functions from the Pumilio protein in various species. Taking advantage of the newly assembled genome sequences, in this study we performed a genome-wide analysis of PUF genes in silkworm and other 27 species. In the silkworm, three PUF genes were identified, named Bmpumilio, Bmpenguin and Bmnop by homology analysis. In fungi and animals, four evolutionarily conservational PUF gene families were identified, Group-A, -B, -C and -D. While Group-A, -C, and -D are present in all fungi and animals, Group-B was only identified in fungi. Interestingly, the number and features of the Puf domains are distinct in each group, suggesting different roles for these proteins in every group. The EST and microarray data showed that the mRNA of the three PUF genes can be widely detected in all tissues of the silkworm. Our results provide some new insights into the functions and evolutionary characteristics of PUF proteins.
Collapse
Affiliation(s)
- Chun-Dong Zhang
- The Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Quenault T, Lithgow T, Traven A. PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 2011; 21:104-12. [DOI: 10.1016/j.tcb.2010.09.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 12/15/2022]
|
35
|
Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:471-92. [PMID: 21957038 DOI: 10.1002/wrna.69] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Puf proteins are regulators of diverse eukaryotic processes including stem cell maintenance, organelle biogenesis, oogenesis, neuron function, and memory formation. At the molecular level, Puf proteins promote translational repression and/or degradation of target mRNAs by first interacting with conserved cis-elements in the 3' untranslated region (UTR). Once bound to an mRNA, Puf proteins elicit RNA repression by complex interactions with protein cofactors and regulatory machinery involved in translation and degradation. Recent work has dramatically increased our understanding of the targets of Puf protein regulation, as well as the mechanisms by which Puf proteins recognize and regulate those mRNA targets. Crystal structure analysis of several Puf-RNA complexes has demonstrated that while Puf proteins are extremely conserved in their RNA-binding domains, Pufs attain target specificity by utilizing different structural conformations to recognize 8-10 nt sequences. Puf proteins have also evolved modes of protein interactions that are organism and transcript-specific, yet two common mechanisms of repression have emerged: inhibition of cap-binding events to block translation initiation, and recruitment of the CCR4-POP2-NOT deadenylase complex for poly(A) tail removal. Finally, multiple schemes to regulate Puf protein activity have been identified, including post-translational mechanisms that allow rapid changes in the repression of mRNA targets.
Collapse
Affiliation(s)
- Melanie A Miller
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
36
|
Kaymak E, Wee L, Ryder SP. Structure and function of nematode RNA-binding proteins. Curr Opin Struct Biol 2010; 20:305-12. [PMID: 20418095 PMCID: PMC2916969 DOI: 10.1016/j.sbi.2010.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/29/2010] [Indexed: 01/27/2023]
Abstract
RNA-binding proteins are critical effectors of gene expression. They guide mRNA localization, translation, and stability, and potentially play a role in regulating mRNA synthesis. The structural basis for RNA recognition by RNA-binding proteins is the key to understand how they target specific transcripts for regulation. Compared to other metazoans, nematode genomes contain a significant expansion in several RNA-binding protein families, including Pumilio-FBF (PUF), TTP-like zinc finger (TZF), and Argonaute-like (AGO) proteins. Genetic data suggest that individual members of each family have distinct functions, presumably due to sequence variations that alter RNA-binding specificity or protein interaction partners. In this review, we highlight example structures and identify the variable regions that likely contribute to functional divergence in nematodes.
Collapse
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - L.M. Wee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
37
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kershner AM, Kimble J. Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci U S A 2010; 107:3936-41. [PMID: 20142496 PMCID: PMC2840422 DOI: 10.1073/pnas.1000495107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stem cells are essential for tissue generation during the development of multicellular creatures, and for tissue homeostasis in adults. The great therapeutic promise of stem cells makes understanding their regulation a high priority. PUF RNA-binding proteins have a conserved role in promoting self-renewal of germline stem cells. Here we use a genome-wide approach to identify putative target mRNAs for the Caenorhabditis elegans PUF protein known as FBF. We find that putative FBF targets represent approximately 7% of all protein-coding genes in C. elegans, implicating FBF as a broad-spectrum gene regulator. These putative FBF targets are enriched for regulators of meiotic entry and other components of the meiotic program as well as regulators of key developmental pathways. We suggest that these targets may be critical for FBF's role in stem cell maintenance. Comparison of likely FBF target mRNAs with putative PUF target mRNAs from Drosophila and humans reveals 40 shared targets, including several established stem cell regulators. We speculate that shared PUF targets represent part of a broadly used module of stem cell control.
Collapse
Affiliation(s)
| | - Judith Kimble
- Program in Cellular and Molecular Biology
- Department of Biochemistry, and
- Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
39
|
Racher H, Hansen D. Translational control in the C. elegans hermaphrodite germ line. Genome 2010; 53:83-102. [DOI: 10.1139/g09-090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of a fully developed gamete from an undifferentiated germ cell requires progression through numerous developmental stages and cell fate decisions. The precise timing and level of gene expression guides cells through these stages. Translational regulation is highly utilized in the germ line of many species, including Caenorhabditis elegans , to regulate gene expression and ensure the proper formation of gametes. In this review, we discuss some of the developmental stages and cell fate decisions involved in the formation of functional gametes in the C. elegans germ line in which translational control has been implicated. These stages include the mitosis versus meiosis decision, the sperm/oocyte decision, and gamete maturation. We also discuss some of the techniques used to identify mRNA targets; the identification of these targets is necessary to clearly understand the role each RNA-binding protein plays in these decisions. Relatively few mRNA targets have been identified, thus providing a major focus for future research. Finally, we propose some reasons why translational control may be utilized so heavily in the germ line. Given that many species have this substantial reliance on translational regulation for the control of gene expression in the germ line, an understanding of translational regulation in the C. elegans germ line is likely to increase our understanding of gamete formation in general.
Collapse
Affiliation(s)
- Hilary Racher
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Dave Hansen
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
40
|
Lee MH, Schedl T. C. elegans star proteins, GLD-1 and ASD-2, regulate specific RNA targets to control development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:106-22. [PMID: 21189689 DOI: 10.1007/978-1-4419-7005-3_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A comprehensive understanding of the C. elegans STAR proteins GLD-1 and ASD-2 is emerging from a combination of studies. Those employing genetic analysis reveal in vivo function, others involving biochemical approaches pursue the identification of mRNA targets through which these proteins act. Lastly, mechanistic studies provide the molecular pathway of target mRNA regulation.
Collapse
Affiliation(s)
- Min-Ho Lee
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York 12222, USA.
| | | |
Collapse
|
41
|
Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks. Proc Natl Acad Sci U S A 2009; 106:20300-5. [PMID: 19918083 DOI: 10.1073/pnas.0906940106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In eukaryotic organisms, gene expression requires an additional level of coordination that links transcriptional and posttranslational processes. Messenger RNAs have traditionally been viewed as passive molecules in the pathway from transcription to translation. However, it is now clear that RNA-binding proteins (RBPs) play an important role in cellular homeostasis by controlling gene expression at the posttranscriptional level. Here, we show that RBPs, as a class of proteins, show distinct gene expression dynamics compared to other protein coding genes in the eukaryote Sacchoromyces cerevisiae. We find that RBPs generally exhibit high protein stability, translational efficiency, and protein abundance but their encoding transcripts tend to have a low half-life. We show that RBPs are also most often posttranslationally modified, indicating their potential for regulation at the protein level to control diverse cellular processes. Further analysis of the RBP-RNA interaction network showed that the number of distinct targets bound by an RBP (connectivity) is strongly correlated with its protein stability, translational efficiency, and abundance. We also note that RBPs show less noise in their expression in a population of cells, with highly connected RBPs showing significantly lower noise. Our results indicate that highly connected RBPs are likely to be tightly regulated at the protein level as significant changes in their expression may bring about large-scale changes in global expression levels by affecting their targets. These observations might explain the molecular basis behind the cause of a number of disorders associated with misexpression or mutation in RBPs. Future studies uncovering the posttranscriptional networks in higher eukaryotes can help our understanding of the link between different levels of regulation and their role in pathological conditions.
Collapse
|
42
|
RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci U S A 2009; 106:20252-7. [PMID: 19915141 DOI: 10.1073/pnas.0907916106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Totipotent stem cells have the potential to differentiate into every cell type. Renewal of totipotent stem cells in the germline and cellular differentiation during early embryogenesis rely upon posttranscriptional regulatory mechanisms. The Caenorhabditis elegans RNA binding protein, MEX-3, plays a key role in both processes. MEX-3 is a maternally-supplied factor that controls the RNA metabolism of transcripts encoding critical cell fate determinants. However, the nucleotide sequence specificity and requirements of MEX-3 mRNA recognition remain unclear. Only a few candidate regulatory targets have been identified, and the full extent of the network of MEX-3 targets is not known. Here, we define the consensus sequence required for MEX-3 RNA recognition and demonstrate that this element is required for MEX-3 dependent regulation of gene expression in live worms. Based on this work, we identify several candidate MEX-3 targets that help explain its dual role in regulating germline stem cell totipotency and embryonic cell fate specification.
Collapse
|
43
|
Translational control during early development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:211-54. [PMID: 20374743 DOI: 10.1016/s1877-1173(09)90006-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translational control of specific messenger RNAs, which themselves are often asymmetrically localized within the cytoplasm of a cell, underlies many events in germline development, and in embryonic axis specification. This comprehensive, but by no means exhaustive, review attempts to present a picture of the present state of knowledge about mechanisms underlying mRNA localization and translational control of specific mRNAs that are mediated by trans-acting protein factors. While RNA localization and translational control are widespread in evolution and have been studied in many experimental systems, this article will focus mainly on three particularly well-characterized systems: Drosophila, Caenorhabditis elegans, and Xenopus. In keeping with the overall theme of this volume, instances in which translational control factors have been linked to human disease states will also be discussed.
Collapse
|
44
|
Vermeirssen V, Joshi A, Michoel T, Bonnet E, Casneuf T, Van de Peer Y. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development. MOLECULAR BIOSYSTEMS 2009; 5:1817-30. [PMID: 19763340 DOI: 10.1039/b908108a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Differential gene expression governs the development, function and pathology of multicellular organisms. Transcription regulatory networks study differential gene expression at a systems level by mapping the interactions between regulatory proteins and target genes. While microarray transcription profiles are the most abundant data for gene expression, it remains challenging to correctly infer the underlying transcription regulatory networks. The reverse-engineering algorithm LeMoNe (learning module networks) uses gene expression profiles to extract ensemble transcription regulatory networks of coexpression modules and their prioritized regulators. Here we apply LeMoNe to a compendium of microarray studies of the worm Caenorhabditis elegans. We obtain 248 modules with a regulation program for 5020 genes and 426 regulators and a total of 24 012 predicted transcription regulatory interactions. Through GO enrichment analysis, comparison with the gene-gene association network WormNet and integration of other biological data, we show that LeMoNe identifies functionally coherent coexpression modules and prioritizes regulators that relate to similar biological processes as the module genes. Furthermore, we can predict new functional relationships for uncharacterized genes and regulators. Based on modules involved in molting, meiosis and oogenesis, ciliated sensory neurons and mitochondrial metabolism, we illustrate the value of LeMoNe as a biological hypothesis generator for differential gene expression in greater detail. In conclusion, through reverse-engineering of C. elegans expression data, we obtained transcription regulatory networks that can provide further insight into metazoan development.
Collapse
|
45
|
Koh YY, Opperman L, Stumpf C, Mandan A, Keles S, Wickens M. A single C. elegans PUF protein binds RNA in multiple modes. RNA (NEW YORK, N.Y.) 2009; 15:1090-9. [PMID: 19369425 PMCID: PMC2685523 DOI: 10.1261/rna.1545309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PUF proteins specifically bind mRNAs to regulate their stability and translation. Here we focus on the RNA-binding specificity of a C. elegans PUF protein, PUF-11. Our findings reveal that PUF-11 binds RNA in multiple modes, in which the protein can accommodate variable spacings between two distinct recognition elements. We propose a structural model in which flexibility in the central region of the protein enables the protein to adopt at least two distinct structures, one of which results in base flipping.
Collapse
Affiliation(s)
- Yvonne Yiling Koh
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 2009; 10:213. [PMID: 19426519 PMCID: PMC2686737 DOI: 10.1186/1471-2164-10-213] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 05/09/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. RESULTS We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. CONCLUSION Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Kim Wong
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Peter Ehlers
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yuji Kohara
- National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | - Steven J Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Robert A Holt
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
47
|
Farley BM, Ryder SP. Regulation of Maternal mRNAs in Early Development. Crit Rev Biochem Mol Biol 2008; 43:135-62. [PMID: 18365862 DOI: 10.1080/10409230801921338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Noble SL, Allen BL, Goh LK, Nordick K, Evans TC. Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development. J Cell Biol 2008; 182:559-72. [PMID: 18695046 PMCID: PMC2500140 DOI: 10.1083/jcb.200802128] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/08/2008] [Indexed: 01/15/2023] Open
Abstract
Processing bodies (P bodies) are conserved mRNA-protein (mRNP) granules that are thought to be cytoplasmic centers for mRNA repression and degradation. However, their specific functions in vivo remain poorly understood. We find that repressed maternal mRNAs and their regulators localize to P body-like mRNP granules in the Caenorhabditis elegans germ line. Surprisingly, several distinct types of regulated granules form during oocyte and embryo development. 3' untranslated region elements direct mRNA targeting to one of these granule classes. The P body factor CAR-1/Rap55 promotes association of repressed mRNA with granules and contributes to repression of Notch/glp-1 mRNA. However, CAR-1 controls Notch/glp-1 only during late oogenesis, where it functions with the RNA-binding regulators PUF-5, PUF-6, and PUF-7. The P body protein CGH-1/Rck/Dhh1 differs from CAR-1 in control of granule morphology and promotes mRNP stability in arrested oocytes. Therefore, a system of diverse and regulated RNP granules elicits stage-specific functions that ensure proper mRNA control during early development.
Collapse
Affiliation(s)
- Scott L Noble
- Program in Molecular Biology, University of Colorado, Denver Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
49
|
Stumpf CR, Kimble J, Wickens M. A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA (NEW YORK, N.Y.) 2008; 14:1550-7. [PMID: 18579869 PMCID: PMC2491472 DOI: 10.1261/rna.1095908] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PUF proteins comprise a highly conserved family of sequence-specific RNA binding proteins that regulate target mRNAs via binding directly to their 3'UTRs. The Caenorhabditis elegans genome encodes several PUF proteins, which cluster into four groups based on sequence similarity; all share amino acids that interact with the RNA in the cocrystal of human Pumilio with RNA. Members of the FBF and the PUF-8/9 groups bind different but related RNA sequences. We focus here on the binding specificity of representatives of a third cluster, comprising PUF-5, -6, and -7. We performed in vivo selection experiments using the yeast three-hybrid system to identify RNA sequences that bind PUF-5 and PUF-6, and we confirmed binding to optimal sites in vitro. The consensus sequences derived from the screens are similar for PUF-5 and PUF-6 but differ from those of the FBF or PUF-8/-9 groups. Similarly, neither PUF-5 nor PUF-6 bind the recognition sites preferred by the other clusters. Mutagenesis studies confirmed the unique RNA specificity of PUF-5/-6. Using the PUF-5 consensus derived from our experiments, we searched a database of C. elegans 3'UTRs to identify potential targets of PUF-5, several of which indeed bind PUF-5. Therefore the consensus has predictive value and provides a route to finding genuine targets of these proteins.
Collapse
Affiliation(s)
- Craig R Stumpf
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
50
|
Maine EM. Studying gene function in Caenorhabditis elegans using RNA-mediated interference. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:184-94. [DOI: 10.1093/bfgp/eln019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|