1
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
A Matrix Metalloproteinase Mediates Tracheal Development in Bombyx mori. Int J Mol Sci 2021; 22:ijms22115618. [PMID: 34070691 PMCID: PMC8198827 DOI: 10.3390/ijms22115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin β1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2′-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin β1.
Collapse
|
3
|
Mostafa-He G, Ewaiss Has M, Sabry D, Ibrahim Al R. Anti-diabetic Therapeutic Efficacy of Mesenchymal Stem Cells-derived Exosomes. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.437.446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
5
|
Activity-Induced Synaptic Structural Modifications by an Activator of Integrin Signaling at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:3246-3263. [PMID: 28219985 DOI: 10.1523/jneurosci.3128-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
Activity-induced synaptic structural modification is crucial for neural development and synaptic plasticity, but the molecular players involved in this process are not well defined. Here, we report that a protein named Shriveled (Shv) regulates synaptic growth and activity-dependent synaptic remodeling at the Drosophila neuromuscular junction. Depletion of Shv causes synaptic overgrowth and an accumulation of immature boutons. We find that Shv physically and genetically interacts with βPS integrin. Furthermore, Shv is secreted during intense, but not mild, neuronal activity to acutely activate integrin signaling, induce synaptic bouton enlargement, and increase postsynaptic glutamate receptor abundance. Consequently, loss of Shv prevents activity-induced synapse maturation and abolishes post-tetanic potentiation, a form of synaptic plasticity. Our data identify Shv as a novel trans-synaptic signal secreted upon intense neuronal activity to promote synapse remodeling through integrin receptor signaling.SIGNIFICANCE STATEMENT The ability of neurons to rapidly modify synaptic structure in response to neuronal activity, a process called activity-induced structural remodeling, is crucial for neuronal development and complex brain functions. The molecular players that are important for this fundamental biological process are not well understood. Here we show that the Shriveled (Shv) protein is required during development to maintain normal synaptic growth. We further demonstrate that Shv is selectively released during intense neuronal activity, but not mild neuronal activity, to acutely activate integrin signaling and trigger structural modifications at the Drosophila neuromuscular junction. This work identifies Shv as a key modulator of activity-induced structural remodeling and suggests that neurons use distinct molecular cues to differentially modulate synaptic growth and remodeling to meet synaptic demand.
Collapse
|
6
|
Zhang K, Tan J, Xu M, Su J, Hu R, Chen Y, Xuan F, Yang R, Cui H. A novel granulocyte-specific α integrin is essential for cellular immunity in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:61-67. [PMID: 25450560 DOI: 10.1016/j.jinsphys.2014.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Haemocytes play crucial roles in immune responses and survival in insects. Specific cell markers have proven effective in clarifying the function and haematopoiesis of haemocytes. The silkworm Bombyx mori is a good model for studying insect haemocytes; however, little is known about haemocyte-specific markers or their functions in silkworm. In this study, we identified the α subunit of integrin, BmintegrinαPS3, as being specifically and highly expressed in silkworm haemocytes. Immunofluorescence analysis validated the specificity of BmintegrinαPS3 in larval granulocytes. Further analyses indicated that haemocytes dispersed from haematopoietic organs (HPOs) into the circulating haemolymph could differentiate into granulocytes. In addition, the processes of encapsulation and phagocytosis were controlled by larval granulocytes. Our work demonstrated that BmintegrinαPS3 could be used as a specific marker for granulocytes and could be applied to future molecular cell biology studies.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yibiao Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Rui Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
7
|
Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling. J Neurosci 2014; 34:13047-65. [PMID: 25253852 DOI: 10.1523/jneurosci.1484-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a Drosophila whole-genome transgenic RNAi screen for glycogenes regulating synapse function, we have identified two protein α-N-acetylgalactosaminyltransferases (pgant3 and pgant35A) that regulate synaptic O-linked glycosylation (GalNAcα1-O-S/T). Loss of either pgant alone elevates presynaptic/postsynaptic molecular assembly and evoked neurotransmission strength, but synapses appear restored to normal in double mutants. Likewise, activity-dependent facilitation, augmentation, and posttetanic potentiation are all suppressively impaired in pgant mutants. In non-neuronal contexts, pgant function regulates integrin signaling, and we show here that the synaptic Position Specific 2 (αPS2) integrin receptor and transmembrane tenascin ligand are both suppressively downregulated in pgant mutants. Channelrhodopsin-driven activity rapidly (<1 min) drives integrin signaling in wild-type synapses but is suppressively abolished in pgant mutants. Optogenetic stimulation in pgant mutants alters presynaptic vesicle trafficking and postsynaptic pocket size during the perturbed integrin signaling underlying synaptic plasticity defects. Critically, acute blockade of integrin signaling acts synergistically with pgant mutants to eliminate all activity-dependent synaptic plasticity.
Collapse
|
8
|
Buchmann A, Alber M, Zartman JJ. Sizing it up: The mechanical feedback hypothesis of organ growth regulation. Semin Cell Dev Biol 2014; 35:73-81. [DOI: 10.1016/j.semcdb.2014.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/28/2022]
|
9
|
Bilousov O, Koval A, Keshelava A, Katanaev VL. Identification of novel elements of the Drosophila blisterome sheds light on potential pathological mechanisms of several human diseases. PLoS One 2014; 9:e101133. [PMID: 24968325 PMCID: PMC4072764 DOI: 10.1371/journal.pone.0101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which – apposition of the dorsal and ventral wing sheets during metamorphosis – is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Collapse
Affiliation(s)
- Oleksii Bilousov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amiran Keshelava
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Activity-dependent retrograde laminin A signaling regulates synapse growth at Drosophila neuromuscular junctions. Proc Natl Acad Sci U S A 2012; 109:17699-704. [PMID: 23054837 DOI: 10.1073/pnas.1206416109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retrograde signals induced by synaptic activities are derived from postsynaptic cells to potentiate presynaptic properties, such as cytoskeletal dynamics, gene expression, and synaptic growth. However, it is not known whether activity-dependent retrograde signals can also depotentiate synaptic properties. Here we report that laminin A (LanA) functions as a retrograde signal to suppress synapse growth at Drosophila neuromuscular junctions (NMJs). The presynaptic integrin pathway consists of the integrin subunit βν and focal adhesion kinase 56 (Fak56), both of which are required to suppress crawling activity-dependent NMJ growth. LanA protein is localized in the synaptic cleft and only muscle-derived LanA is functional in modulating NMJ growth. The LanA level at NMJs is inversely correlated with NMJ size and regulated by larval crawling activity, synapse excitability, postsynaptic response, and anterograde Wnt/Wingless signaling, all of which modulate NMJ growth through LanA and βν. Our data indicate that synaptic activities down-regulate levels of the retrograde signal LanA to promote NMJ growth.
Collapse
|
11
|
Brown NH. Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005082. [PMID: 21917993 DOI: 10.1101/cshperspect.a005082] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) and its receptors make diverse contributions to development. The ECM comes in a variety of forms, including the more "standard" ECM that is internal to the animal and on the basal side of epithelial sheets, as well as the apical ECM, which is especially elaborated in the invertebrates to form the exoskeleton. ECM proteins accumulate adjacent to particular target tissues in the developing animal by a variety of mechanisms: local synthesis in the target tissue; local synthesis by migrating cells; and secretion from a distant source and capture by the target tissue. The diverse developmental functions of the ECM are discussed, including the generation of a road for cell migration, creation of morphogenetic checkpoints for differentiation, modulation of morphogen gradients, insulation of organs, gluing together cell layers, and providing structure for the organism.
Collapse
Affiliation(s)
- Nicholas H Brown
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience, University of Cambridge, United Kingdom.
| |
Collapse
|
12
|
Renfranz PJ, Blankman E, Beckerle MC. The cytoskeletal regulator zyxin is required for viability in Drosophila melanogaster. Anat Rec (Hoboken) 2010; 293:1455-69. [PMID: 20648572 DOI: 10.1002/ar.21193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The zyxin family of proteins function as cytoskeletal regulators in adhesion, actin assembly, and cell motility. Though fibroblasts derived from zyxin-null mice show striking defects in motility and response to mechanical stimuli, the mice are viable and fertile. In Drosophila melanogaster, the family is represented by a single homologue, Zyx102. To study the role of zyxin during development, we generated a zyx102 RNA-interference transgenic line that allows for the conditional knockdown of Zyx102. When UAST-zyx102-dsRNAi expression is driven broadly by Actin5C-GAL4, loss of Zyx102 results in lethality during the pharate adult stage, a narrow developmental window during which the fly must molt, resorb molting fluid, fill adult trachea with air, and execute a behavioral program to eclose. Zyx102 knockdown animals attempt to emerge, but their adult trachea do not fill with air. If dissected from the pupal case, knockdown individuals appear morphologically normal, but remain inviable.
Collapse
Affiliation(s)
- Patricia J Renfranz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | | | |
Collapse
|
13
|
Guha A, Lin L, Kornberg TB. Regulation of Drosophila matrix metalloprotease Mmp2 is essential for wing imaginal disc:trachea association and air sac tubulogenesis. Dev Biol 2009; 335:317-26. [PMID: 19751719 PMCID: PMC2784283 DOI: 10.1016/j.ydbio.2009.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/01/2009] [Indexed: 11/30/2022]
Abstract
The Drosophila Dorsal Air Sac Primordium (ASP) is a tracheal tube that grows toward Branchless FGF-expressing cells in the wing imaginal disc. We show that the ASP arises from a tracheal branch that invades the basal lamina of the disc to juxtapose directly with disc cells. We examined the role of matrix metalloproteases (Mmps), and found that reducing Mmp2 activity perturbed disc-trachea association, altered peritracheal distributions of collagen IV and Perlecan, misregulated ASP growth, and abrogated development of the dorsal air sacs. Whereas the function of the membrane-tethered Mmp2 in the ASP is non-cell autonomous we find that it may have distinct tissue-specific roles in the ASP and disc. These findings demonstrate a critical role for Mmp2 in tubulogenesis post-induction, and implicate Mmp2 in regulating dynamic and essential changes to the extracellular matrix.
Collapse
Affiliation(s)
- Arjun Guha
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|