1
|
Wang B, Li Y, Sui M, Qi Q, Wang T, Liu D, Zhou M, Zheng Y, Zhu LQ, Zhang B. Identification of the downstream molecules of agrin/Dok-7 signaling in muscle. FASEB J 2020; 34:5144-5161. [PMID: 32043676 DOI: 10.1096/fj.201901693rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022]
Abstract
The development of the neuromuscular junction depends on signaling processes that involve protein phosphorylation. Motor neuron releases agrin to activate muscle protein Dok-7, a key tyrosine kinase essential for the formation of a mature and functional neuromuscular junction. However, the signaling cascade downstream of Dok-7 remains poorly understood. In this study, we combined the clustered regularly interspaced short palindromic repeats/Cas9 technique and quantitative phosphoproteomics analysis to study the tyrosine phosphorylation events triggered by agrin/Dok-7. We found tyrosine phosphorylation level of 36 proteins increased specifically by agrin stimulation. In Dok-7 mutant myotubes, however, 13 of the 36 proteins failed to be enhanced by agrin stimulation, suggesting that these 13 proteins are Dok-7-dependent tyrosine-phosphorylated proteins, could work as downstream molecules of agrin/Dok-7 signaling. We validated one of the proteins, Anxa3, by in vitro and in vivo assays. Knocking down of Anxa3 in the cultured myotubes inhibited agrin-induced AChR clustering, whereas reduction of Anxa3 in mouse muscles induced abnormal postsynaptic development. Collectively, our phosphoproteomics analysis provides novel insights into the complicated signaling network downstream of agrin/Dok-7.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Qi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Zheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Moon Y, Balke JE, Madorma D, Siegel MP, Knowels G, Brouckaert P, Buys ES, Marcinek DJ, Percival JM. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms. Antioxid Redox Signal 2017; 26:966-985. [PMID: 27393340 PMCID: PMC5467110 DOI: 10.1089/ars.2016.6630] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. RESULTS GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1-/- muscle. Functional analyses of GC1-/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1-/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. INNOVATION GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. CONCLUSIONS These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.
Collapse
Affiliation(s)
- Younghye Moon
- 1 Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida
| | - Jordan E Balke
- 1 Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida
| | - Derik Madorma
- 1 Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida
| | - Michael P Siegel
- 2 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Gary Knowels
- 2 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Peter Brouckaert
- 3 Department for Molecular Biomedical Research and Biomedical Molecular Biology, Ghent University , Ghent, Belgium
| | - Emmanuel S Buys
- 4 Department of Anesthesia, Critical Care and Pain Medicine, Anesthesia Center for Critical Care Research , Massachusetts General Hospital, Boston, Massachusetts
| | - David J Marcinek
- 2 Department of Bioengineering, University of Washington , Seattle, Washington.,5 Department of Radiology, University of Washington , Seattle, Washington
| | - Justin M Percival
- 1 Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
3
|
Jay M, Bradley S, McDearmid JR. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. PLoS One 2014; 9:e86930. [PMID: 24489806 PMCID: PMC3904980 DOI: 10.1371/journal.pone.0086930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.
Collapse
Affiliation(s)
- Michael Jay
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Sophie Bradley
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Jonathan Robert McDearmid
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Gasheva OY, Gashev AA, Zawieja DC. Cyclic guanosine monophosphate and the dependent protein kinase regulate lymphatic contractility in rat thoracic duct. J Physiol 2013; 591:4549-65. [PMID: 23836689 DOI: 10.1113/jphysiol.2013.258681] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously demonstrated a principal role for nitric oxide (NO) in the endothelium/shear-dependent regulation of contractility in rat thoracic duct (TD). In this study we tested the hypothesis that cyclic guanosine monophosphate (cGMP) and the dependent protein kinase (PKG) are central to the intrinsic and extrinsic flow-dependent modulation of lymphatic contractility. Lymphatic diameters and indices of pumping in isolated, cannulated and pressurized segments of rat TD were measured. The influences of increased transmural pressure (1-5 cmH2O) and imposed flow (1-5 cm H2O transaxial pressure gradients) on lymphatic function were studied before and after: (1) inhibition of guanylate cyclase (GC) with and without a NO donor; (2) application of stable cGMP analogue; and (3) inhibition of the cGMP activation of PKG. Additionally, Western blotting and immunofluorescent tissue staining were used to analyse the PKG isoforms expressed in TD. We found that the GC inhibitor ODQ induced changes in TD contractility similar to NO synthase blockade and prevented the relaxation induced by the NO donor S-nitroso-N-acetylpenicillamine. The cGMP analogue, 8-(4-Chlorophenylthio)-guanosine 3,5-cyclic monophosphate sodium salt (8pCPTcGMP), mimicked the extrinsic flow-induced relaxation in a dose-dependent manner, whereas treatment with the cGMP/PKG inhibitor, guanosine 3,5-cyclic monophosphorothioate, 8-(4-chlorophenylthio)-, Rp-isomer, triethylammonium salt (Rp-8-Br-PETcGMPS), eliminated intrinsic flow-dependent relaxation, and largely inhibited extrinsic flow-dependent relaxation. Western blotting demonstrated that both PKG-Iα and -Iβ isoforms are found in TD, with ∼10 times greater expression of the PKG-Iα protein in TD compared with the aorta and vena cava. The PKG-Iβ isoform expressed equally in TD and vena cava, both being ∼2 times higher than that in the aorta. Immunofluorescent labelling of PKG-Iα protein in the wall of rat thoracic duct confirmed its localization inside TD muscle cells. These findings demonstrate that cGMP is critical to the flow-dependent regulation of TD contractility; they also indicate an important involvement of PKG, especially PKG-Iα in these processes and identifies PKG protein as a potential therapeutic target.
Collapse
Affiliation(s)
- Olga Yu Gasheva
- O. Y. Gasheva: Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA.
| | | | | |
Collapse
|
5
|
Godfrey EW, Schwarte RC. Nitric oxide and cyclic GMP regulate early events in agrin signaling in skeletal muscle cells. Exp Cell Res 2010; 316:1935-45. [PMID: 20346357 DOI: 10.1016/j.yexcr.2010.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 01/09/2023]
Abstract
Agrin released from motor nerve terminals directs differentiation of the vertebrate neuromuscular junction (NMJ). Activity of nitric oxide synthase (NOS), guanylate cyclase (GC), and cyclic GMP-dependent protein kinase (PKG) contributes to agrin signaling in embryonic frog and chick muscle cells. Stimulation of the NO/cyclic GMP (cGMP) pathway in embryos potentiates agrin's ability to aggregate acetylcholine receptors (AChRs) at NMJs. Here we investigated the timing and mechanism of NO and cGMP action. Agrin increased NO levels in mouse C2C12 myotubes. NO donors potentiated agrin-induced AChR aggregation during the first 20 min of agrin treatment, but overnight treatment with NO donors inhibited agrin activity. Adenoviruses encoding siRNAs against each of three NOS isoforms reduced agrin activity, indicating that these isoforms all contribute to agrin signaling. Inhibitors of NOS, GC, or PKG reduced agrin-induced AChR aggregation in mouse muscle cells by approximately 50%. However, increased activation of the GTPase Rac1, an early step in agrin signaling, was dependent on NOS activity and was mimicked by NO donors and a cGMP analog. Our results indicate that stimulation of the NO/cGMP pathway is important during the first few minutes of agrin signaling and is required for agrin-induced Rac1 activation, a key step leading to reorganization of the actin cytoskeleton and subsequent aggregation of AChRs on the surface of skeletal muscle cells.
Collapse
Affiliation(s)
- Earl W Godfrey
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA.
| | | |
Collapse
|
6
|
Knipp S, Bicker G. A developmental study of enteric neuron migration in the grasshopper using immunological probes. Dev Dyn 2010; 238:2837-49. [PMID: 19842181 DOI: 10.1002/dvdy.22115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motility of enteric plexus neurons in the grasshopper Locusta migratoria depends critically on the NO/cGMP signaling cascade. This is reflected in a strong NO-dependent cGMP staining in migrating enteric midgut neurons. In contrast, first cGMP immunoreactivity (cGMP-IR) in the foregut enteric ganglia was detected clearly after the main migratory processes have taken place. Thus, expression of cGMP-IR in migrating neurons is a distinct phenomenon restricted to neurons forming midgut and foregut plexus, that does not occur during convergence of neurons forming the enteric ganglia. Analysis of time lapse video microscopy of migrating midgut neurons together with an immunofluorescence study of midgut cellular structures suggests a contribution of the midgut musculature to enteric neuron guidance. Additionally, during midgut plexus formation a fasciculating signal for enteric neuron neurites appears to be provided by the cell adhesion molecule Fasciclin I.
Collapse
Affiliation(s)
- Sabine Knipp
- University of Veterinary Medicine Hannover, Division of Cell Biology, Institute of Physiology, Hannover, Germany
| | | |
Collapse
|
7
|
Abstract
The heparan sulfate proteoglycan agrin is best known for its essential role during formation, maintenance and regeneration of the neuromuscular junction. Mutations in agrin-interacting proteins are the genetic basis for a number of neuromuscular disorders. However, agrin is widely expressed in many tissues including neurons and glial cells of the brain, where its precise function is much less understood. Fewer synapses develop in brains that lack agrin, consistent with a function of agrin during CNS synaptogenesis. Recently, a specific transmembrane form of agrin (TM-agrin) was identified that is concentrated at that interneuronal synapses in the brain. Clustering or overexpression of TM-agrin leads to the formation of filopodia-like processes, which might be precursors for CNS synapses. Agrin is subject to defined and activity-dependent proteolytic cleavage by neurotrypsin at synapses and dysregulation of agrin processing might contribute to the development of mental retardation. This review summarizes what is known about the role of agrin during synapse formation at the neuromuscular junction and in the developing CNS and will discuss additional functions of agrin in the adult CNS, in particular during BBB formation, during recovery after traumatic brain injury and in the etiology of diseases, including Alzheimer’s disease and mental retardation.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| | - Heike Pfister
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| |
Collapse
|
8
|
Knipp S, Bicker G. Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO. Development 2008; 136:85-93. [PMID: 19019991 DOI: 10.1242/dev.026716] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enteric nervous system (ENS) of insects is a useful model to study cell motility. Using small-molecule compounds to activate or inactivate biosynthetic enzymes, we demonstrate that the gaseous messenger molecules carbon monoxide (CO) and nitric oxide (NO) regulate neuron migration in the locust ENS. CO is produced by heme oxygenase (HO) enzymes and has the potential to signal via the sGC/cGMP pathway. While migrating on the midgut, the enteric neurons express immunoreactivity for HO. Here, we show that inhibition of HO by metalloporphyrins promotes enteric neuron migration in intact locust embryos. Thus, the blocking of enzyme activity results in a gain of function. The suppression of migratory behavior by activation of HO or application of a CO donor strongly implicates the release of CO as an inhibitory signal for neuron migration in vivo. Conversely, inhibition of nitric oxide synthase or application of the extracellular gaseous molecule scavenger hemoglobin reduces cell migration. The cellular distribution of NO and CO biosynthetic enzymes, together with the results of the chemical manipulations in whole embryo culture suggest CO as a modulator of transcellular NO signals during neuronal migration. Thus, we provide the first evidence that CO regulates embryonic nervous system development in a rather simple invertebrate model.
Collapse
Affiliation(s)
- Sabine Knipp
- University of Veterinary Medicine Hannover, Division of Cell Biology, Institute of Physiology, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | |
Collapse
|