1
|
SenGupta T, Lefol Y, Lirussi L, Suaste V, Luders T, Gupta S, Aman Y, Sharma K, Fang EF, Nilsen H. Krill oil protects dopaminergic neurons from age-related degeneration through temporal transcriptome rewiring and suppression of several hallmarks of aging. Aging (Albany NY) 2022; 14:8661-8687. [DOI: 10.18632/aging.204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tanima SenGupta
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Yohan Lefol
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Lisa Lirussi
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Veronica Suaste
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Torben Luders
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Swapnil Gupta
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Yahyah Aman
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Kulbhushan Sharma
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Evandro Fei Fang
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
| |
Collapse
|
2
|
Achache H, Falk R, Lerner N, Beatus T, Tzur YB. Oocyte aging is controlled by mitogen-activated protein kinase signaling. Aging Cell 2021; 20:e13386. [PMID: 34061407 PMCID: PMC8208789 DOI: 10.1111/acel.13386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/25/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oogenesis is one of the first processes to fail during aging. In women, most oocytes cannot successfully complete meiotic divisions already during the fourth decade of life. Studies of the nematode Caenorhabditis elegans have uncovered conserved genetic pathways that control lifespan, but our knowledge regarding reproductive aging in worms and humans is limited. Specifically, little is known about germline internal signals that dictate the oogonial biological clock. Here, we report a thorough characterization of the changes in the worm germline during aging. We found that shortly after ovulation halts, germline proliferation declines, while apoptosis continues, leading to a gradual reduction in germ cell numbers. In late aging stages, we observed that meiotic progression is disturbed and crossover designation and DNA double-strand break repair decrease. In addition, we detected a decline in the quality of mature oocytes during aging, as reflected by decreasing size and elongation of interhomolog distance, a phenotype also observed in human oocytes. Many of these altered processes were previously attributed to MAPK signaling variations in young worms. In support of this, we observed changes in activation dynamics of MPK-1 during aging. We therefore tested the hypothesis that MAPK controls oocyte quality in aged worms using both genetic and pharmacological tools. We found that in mutants with high levels of activated MPK-1, oocyte quality deteriorates more rapidly than in wild-type worms, whereas reduction of MPK-1 levels enhances quality. Thus, our data suggest that MAPK signaling controls germline aging and could be used to attenuate the rate of oogenesis quality decline.
Collapse
Affiliation(s)
- Hanna Achache
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Falk
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Noam Lerner
- Department of NeurobiologyThe Institute of Life ScienceThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Tsevi Beatus
- Department of NeurobiologyThe Institute of Life ScienceThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Yonatan B. Tzur
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
3
|
Qu M, Li D, Qiu Y, Wang D. Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138378. [PMID: 32272418 DOI: 10.1016/j.scitotenv.2020.138378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
The responses of different organs are important for organisms against the toxicity of environmental toxicants. So far, the neuronal response to nanoplastic exposure and the underlying mechanisms are still largely unclear. Due to the sensitivity to environmental exposures, we here employed Caenorhabditis elegans as an animal model to examine the role of ERK MAPK signaling pathway in the neurons to regulate the response to nanopolystyrene (100 nm). Nanopolystyrene exposure in the range of μg/L could significantly increase expressions of genes (lin-45, mek-2, and mpk-1) encoding ERK MAPK signaling pathway. Nanopolystyrene at the predicted environmental concentration of 1 μg/L could only significantly increase the mpk-1 expression. Meanwhile, RNAi knockdown of any of these genes caused a susceptibility to nanopolystyrene toxicity. ERK/MPK-1 acted in the neurons to regulate the response to nanopolystyrene. Moreover, three genes (ins-4, ins-39, and daf-28) encoding insulin peptides were identified as the downstream targeted genes of neuronal mpk-1 in regulating the response to nanopolystyrene. In nanopolystyrene exposed nematodes, neuronal RNAi knockdown of ins-4, ins-39, or daf-28 decreased expression of intestinal daf-2 encoding insulin receptor and increased expression of intestinal daf-16 encoding FOXO transcriptional factor. Therefore, the neuronal ERK MAPK signaling responded to nanopolystyrene by modulating the insulin signaling-mediated communication between neurons and intestine in nematodes. Our findings are helpful for understanding the molecular basis of neuronal response to nanopolystyrene in organisms.
Collapse
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dan Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Achache H, Laurent L, Hecker-Mimoun Y, Ishtayeh H, Rappaport Y, Kroizer E, Colaiácovo MP, Tzur YB. Progression of Meiosis Is Coordinated by the Level and Location of MAPK Activation Via OGR-2 in Caenorhabditis elegans. Genetics 2019; 212:213-229. [PMID: 30867196 PMCID: PMC6499523 DOI: 10.1534/genetics.119.302080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
During meiosis, a series of evolutionarily conserved events allow for reductional chromosome division, which is required for sexual reproduction. Although individual meiotic processes have been extensively studied, we currently know far less about how meiosis is regulated and coordinated. In the Caenorhabditis elegans gonad, mitogen-activated protein kinase (MAPK) signaling drives oogenesis while undergoing spatial activation and deactivation waves. However, it is currently unclear how MAPK activation is governed and how it facilitates the progression of oogenesis. Here, we show that the oocyte and germline-related 2 (ogr-2) gene affects proper progression of oogenesis. Complete deletion of ogr-2 results in delayed meiotic entry and late spatial onset of double-strand break repair. Elevated levels of apoptosis are observed in this mutant, independent of the meiotic canonical checkpoints; however, they are dependent on the MAPK terminal member MPK-1/ERK. MPK-1 activation is elevated in diplotene in ogr-2 mutants and its aberrant spatial activation correlates with stages where meiotic progression defects are evident. Deletion of ogr-2 significantly reduces the expression of lip-1, a phosphatase reported to repress MPK-1, which is consistent with OGR-2 localization at chromatin in germ cells. We suggest that OGR-2 modulates the expression of lip-1 to promote the timely progression of meiosis through MPK-1 spatial deactivation.
Collapse
Affiliation(s)
- Hanna Achache
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Lévana Laurent
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yaël Hecker-Mimoun
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Hasan Ishtayeh
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yisrael Rappaport
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Eitan Kroizer
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | - Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Tzur YB, Winter E, Gao J, Hashimshony T, Yanai I, Colaiácovo MP. Spatiotemporal Gene Expression Analysis of the Caenorhabditis elegans Germline Uncovers a Syncytial Expression Switch. Genetics 2018; 210:587-605. [PMID: 30093412 PMCID: PMC6216576 DOI: 10.1534/genetics.118.301315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental programs are executed by tightly controlled gene regulatory pathways. Here, we combined the unique sample retrieval capacity afforded by laser capture microscopy with analysis of mRNA abundance by CEL-Seq (cell expression by linear amplification and sequencing) to generate a spatiotemporal gene expression map of the Caenorhabditis elegans syncytial germline from adult hermaphrodites and males. We found that over 6000 genes exhibit spatiotemporally dynamic expression patterns throughout the hermaphrodite germline, with two dominant groups of genes exhibiting reciprocal shifts in expression at late pachytene during meiotic prophase I. We found a strong correlation between restricted spatiotemporal expression and known developmental and cellular processes, indicating that these gene expression changes may be an important driver of germ cell progression. Analysis of the male gonad revealed a shift in gene expression at early pachytene and upregulation of subsets of genes following the meiotic divisions, specifically in early and late spermatids, mostly transcribed from the X chromosome. We observed that while the X chromosome is silenced throughout the first half of the gonad, some genes escape this control and are highly expressed throughout the germline. Although we found a strong correlation between the expression of genes corresponding to CSR-1-interacting 22G-RNAs during germ cell progression, we also found that a large fraction of genes may bypass the need for CSR-1-mediated germline licensing. Taken together, these findings suggest the existence of mechanisms that enable a shift in gene expression during prophase I to promote germ cell progression.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem 91904, Israel
| | - Eitan Winter
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Tamar Hashimshony
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Itai Yanai
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
6
|
Deshong AJ, Ye AL, Lamelza P, Bhalla N. A quality control mechanism coordinates meiotic prophase events to promote crossover assurance. PLoS Genet 2014; 10:e1004291. [PMID: 24762417 PMCID: PMC3998905 DOI: 10.1371/journal.pgen.1004291] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/21/2014] [Indexed: 01/12/2023] Open
Abstract
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase. The production of sperm and eggs for sexual reproduction depends on meiosis. During this specialized cell division, homologous chromosomes are linked by at least one crossover recombination event, or chiasma, to promote their proper segregation. How events in meiotic prophase are coordinated to contribute to crossover assurance is not well understood. Here, we show that C. elegans PCH-2 regulates a variety of events during meiotic prophase to promote crossover assurance. In the absence of pch-2, pairing, synapsis and recombination are accelerated, resulting in defects in synapsis and crossover formation. We propose that PCH-2 restrains the events of meiotic prophase to coordinate them, ensure their fidelity and guarantee that each homolog pair has at least one crossover to promote proper meiotic chromosome segregation.
Collapse
Affiliation(s)
- Alison J. Deshong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Alice L. Ye
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Piero Lamelza
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
8
|
Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs. Genome Biol 2013; 14:R5. [PMID: 23347407 PMCID: PMC4053757 DOI: 10.1186/gb-2013-14-1-r5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/23/2013] [Indexed: 01/12/2023] Open
Abstract
Background The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood. Results We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, the C. elegans ortholog of Rb, is impaired in the germline but robust in the soma, a characteristic that might govern differential effects on gene expression in the two cell types. In the intestine, LIN-35 and the heterochromatin protein HPL-2, the ortholog of Hp1, coordinately bind at many sites lacking E2F. Finally, selected direct target genes contribute to the soma-to-germline transformation of lin-35 mutants, including mes-4, a soma-specific target that promotes H3K36 methylation, and csr-1, a germline-specific target that functions in a 22G small RNA pathway. Conclusions In sum, identification of tissue-specific binding profiles and effector target genes reveals important insights into the mechanisms by which Rb/E2F controls distinct cell fates in vivo.
Collapse
|
9
|
Abstract
Caenorhabditis elegans, a free-living soil nematode, is an ideal model system for studying various physiological problems relevant to human diseases. Despite its short history, C. elegans proteomics is receiving great attention in multiple research areas, including the genome annotation, major signaling pathways (e.g. TGF-beta and insulin/IGF-1 signaling), verification of RNA interference-mediated gene targeting, aging, disease models, as well as peptidomic analysis of neuropeptides involved in behavior and locomotion. For example, a proteome-wide profiling of developmental and aging processes not only provides basic information necessary for constructing a molecular network, but also identifies important target proteins for chemical modulation. Although C. elegans has a simple body system and neural circuitry, it exhibits very complicated functions ranging from feeding to locomotion. Investigation of these functions through proteomic analysis of various C. elegans neuropeptides, some of which are not found in the predicted genome sequence, would open a new field of peptidomics. Given the importance of nematode infection in plants and mammalian pathogenesis pathways, proteomics could be applied to investigate the molecular mechanisms underlying plant- or animal-nematode pathogenesis and to identify novel antinematodal drugs. Thus, C. elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions throughout the entire life cycle of this nematode.
Collapse
Affiliation(s)
- Yhong-Hee Shim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Gwangjin-Ku, Seoul, Korea
| | | |
Collapse
|
10
|
Grigsby IF, Rutledge EM, Morton CA, Finger FP. Functional redundancy of two C. elegans homologs of the histone chaperone Asf1 in germline DNA replication. Dev Biol 2009; 329:64-79. [PMID: 19233156 DOI: 10.1016/j.ydbio.2009.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/30/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022]
Abstract
Eukaryotic genomes contain either one or two genes encoding homologs of the highly conserved histone chaperone Asf1, however, little is known of their in vivo roles in animal development. UNC-85 is one of the two Caenorhabditis elegans Asf1 homologs and functions in post-embryonic replication in neuroblasts. Although UNC-85 is broadly expressed in replicating cells, the specificity of the mutant phenotype suggested possible redundancy with the second C. elegans Asf1 homolog, ASFL-1. The asfl-1 mRNA is expressed in the meiotic region of the germline, and mutants in either Asf1 genes have reduced brood sizes and low penetrance defects in gametogenesis. The asfl-1, unc-85 double mutants are sterile, displaying defects in oogenesis and spermatogenesis, and analysis of DNA synthesis revealed that DNA replication in the germline is blocked. Analysis of somatic phenotypes previously observed in unc-85 mutants revealed that they are neither observed in asfl-1 mutants, nor enhanced in the double mutants, with the exception of enhanced male tail abnormalities in the double mutants. These results suggest that the two Asf1 homologs have partially overlapping functions in the germline, while UNC-85 is primarily responsible for several Asf1 functions in somatic cells, and is more generally involved in replication throughout development.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech-BCHM-2, Troy, NY 12180, USA
| | | | | | | |
Collapse
|