1
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
2
|
Gawne R, McKenna KZ, Nijhout HF. Unmodern Synthesis: Developmental Hierarchies and the Origin of Phenotypes. Bioessays 2017; 40. [PMID: 29178269 DOI: 10.1002/bies.201600265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 10/04/2017] [Indexed: 12/14/2022]
Abstract
The question of whether the modern evolutionary synthesis requires an extension has recently become a topic of discussion, and a source of controversy. We suggest that this debate is, for the most part, not about the modern synthesis at all. Rather, it is about the extent to which genetic mechanisms can be regarded as the primary determinants of phenotypic characters. The modern synthesis has been associated with the idea that phenotypes are the result of gene products, while supporters of the extended synthesis have suggested that environmental factors, along with processes such as epigenetic inheritance, and niche construction play an important role in character formation. We argue that the methodology of the modern evolutionary synthesis has been enormously successful, but does not provide an accurate characterization of the origin of phenotypes. For its part, the extended synthesis has yet to be transformed into a testable theory, and accordingly, has yielded few results. We conclude by suggesting that the origin of phenotypes can only be understood by integrating findings from all levels of the organismal hierarchy. In most cases, parts and processes from a single level fail to accurately explain the presence of a given phenotypic trait.
Collapse
Affiliation(s)
- Richard Gawne
- Department of Biology, Duke University 130 Science Dr., Durham, NC, 27708, USA
| | - Kenneth Z McKenna
- Department of Biology, Duke University 130 Science Dr., Durham, NC, 27708, USA
| | - H Frederik Nijhout
- Department of Biology, Duke University 130 Science Dr., Durham, NC, 27708, USA
| |
Collapse
|
3
|
Pascual-Anaya J, D'Aniello S, Kuratani S, Garcia-Fernàndez J. Evolution of Hox gene clusters in deuterostomes. BMC DEVELOPMENTAL BIOLOGY 2013; 13:26. [PMID: 23819519 PMCID: PMC3707753 DOI: 10.1186/1471-213x-13-26] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022]
Abstract
Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of “genome Hox bar-code” for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages.
Collapse
|
4
|
Hozumi A, Mita K, Miskey C, Mates L, Izsvak Z, Ivics Z, Satake H, Sasakura Y. Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev Dyn 2012; 242:30-43. [PMID: 23073965 DOI: 10.1002/dvdy.23891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transposon-mediated transgenesis is an excellent method for creating stable transgenic lines and insertional mutants. In the chordate Ciona intestinalis, Minos is the only transposon that has been used as the tool for germline transformation. Adding another transposon system in this organism enables us to conduct genetic techniques which can only be realized with the use of two transposons. RESULTS In the present study, we found that another Tc1/mariner superfamily transposon, sleeping beauty (SB), retains sufficient activity for germline transformation of C. intestinalis. SB shows efficiencies of germline transformation, insertion into gene coding regions, and enhancer detection comparable to those of Minos. We have developed a system for the remobilization of SB copies in the C. intestinalis genome by using transgenic lines expressing SB transposase in the germ cells. With this system, we examined the manner of SB mobilization in the C. intestinalis genome. SB shows intrachromosomal transposition more frequently than Minos. CONCLUSIONS SB-based germline transformation and the establishment of a new method that uses its frequent intrachromosomal transposition will result in breakthroughs in genetic approaches that use C. intestinalis together with Minos.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The neural crest is a multipotent and migratory cell type that forms transiently in the developing vertebrate embryo. These cells emerge from the central nervous system, migrate extensively and give rise to diverse cell lineages including melanocytes, craniofacial cartilage and bone, peripheral and enteric neurons and glia, and smooth muscle. A vertebrate innovation, the gene regulatory network underlying neural crest formation appears to be highly conserved, even to the base of vertebrates. Here, we present an overview of important concepts in the neural crest field dating from its discovery 150 years ago to open questions that will motivate future research.
Collapse
|
6
|
Sasakura Y, Mita K, Ogura Y, Horie T. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev Growth Differ 2012; 54:420-37. [DOI: 10.1111/j.1440-169x.2012.01343.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Kaoru Mita
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Yosuke Ogura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | | |
Collapse
|
7
|
Wotton KR, Shimeld SM. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates. Gene 2011; 489:30-40. [PMID: 21907770 DOI: 10.1016/j.gene.2011.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/02/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome.
Collapse
Affiliation(s)
- Karl R Wotton
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| | | |
Collapse
|
8
|
Shoguchi E, Fujie M, Hamada M. No chromosomal clustering of housekeeping genes in the marine chordate Ciona intestinalis. Mar Genomics 2011; 4:151-7. [PMID: 21867966 DOI: 10.1016/j.margen.2011.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Housekeeping genes, widely expressed genes that are required for the basal function of most cell types, are clustered in the human and worm genomes. This arrangement suggests coordinate control of housekeeping gene expression at the chromosomal level. Here we examined whether this notion is applicable to a marine chordate, Ciona intestinalis. Using microarrays, we analyzed genes that were expressed in 11 organs of the adult, including the neural complex, branchial sac, esophagus, stomach, endostyle, intestine, body-wall muscle, heart, blood cells, ovary and testis. This analysis identified 158 genes that are expressed ubiquitously in these organs. These housekeeping genes could be classified into a range of Gene Ontology categories, in particular, ribosomal protein components. Of these 158 genes, we were able to map 141 genes onto the 14 pairs of the C. intestinalis chromosomes. They were distributed rather evenly over all the chromosomes, except for small clusters containing two or three genes. Therefore, the notion of chromosomal clustering of housekeeping genes is not applicable in this chordate.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
| | | | | |
Collapse
|
9
|
Takahashi H, Hotta K, Takagi C, Ueno N, Satoh N, Shoguchi E. Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos. Zoolog Sci 2010; 27:110-8. [PMID: 20141416 DOI: 10.2108/zsj.27.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified approximately 450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within approximately 3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region approximately 0.5-1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 445-8585, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Yeats B, Matsumoto J, Mortimer SI, Shoguchi E, Satoh N, Hastings KEM. SL RNA genes of the ascidian tunicates Ciona intestinalis and Ciona savignyi. Zoolog Sci 2010; 27:171-80. [PMID: 20141422 DOI: 10.2108/zsj.27.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We characterized by bioinformatics the trans-spliced leader donor RNA (SL RNA) genes of two ascidians, Ciona intestinalis and Ciona savignyi. The Ciona intestinalis genome contains approximately 670 copies of the SL RNA gene, principally on a 264-bp tandemly repeated element. Fluorescent in-situ hybridization mapped most of the repeats to a single site on the short arm of chromosome 8. The Ciona intestinalis genome also contains approximately 100 copies of a >3.6-kb element that carries 1) an SL RNA-related sequence (possible a pseudogene) and 2) genes for the U6 snRNA and a histone-like protein. The Ciona savignyi genome contains two SL RNA gene classes having the same SL sequence as Ciona intestinalis but differing in the intron-like segments. These reside in similar but distinct repeat units of 575 bp ( approximately 410 copies) and 552 bp ( approximately 250 copies) that are arranged as separate tandem repeats. In neither Ciona species is the 5S RNA gene present within the SL RNA gene repeat unit. Although the number of SL RNA genes is similar, there is little sequence similarity between the intestinalis and savignyi repeat units, apart from the region encoding the SL RNA itself. This suggests that cis-regulatory elements involved in transcription and 3'-end processing are likely to be present within the transcribed region. The genomes of both Ciona species also include > 100 dispersed short elements containing the 16-nt SL sequence and up to 6 additional nucleotides of the SL RNA sequence.
Collapse
Affiliation(s)
- Brendan Yeats
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University Street, Montréal, Québec, Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
11
|
Pigliucci M. Genotype-phenotype mapping and the end of the 'genes as blueprint' metaphor. Philos Trans R Soc Lond B Biol Sci 2010; 365:557-66. [PMID: 20083632 DOI: 10.1098/rstb.2009.0241] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a now classic paper published in 1991, Alberch introduced the concept of genotype-phenotype (G-->P) mapping to provide a framework for a more sophisticated discussion of the integration between genetics and developmental biology that was then available. The advent of evo-devo first and of the genomic era later would seem to have superseded talk of transitions in phenotypic space and the like, central to Alberch's approach. On the contrary, this paper shows that recent empirical and theoretical advances have only sharpened the need for a different conceptual treatment of how phenotypes are produced. Old-fashioned metaphors like genetic blueprint and genetic programme are not only woefully inadequate but positively misleading about the nature of G-->P, and are being replaced by an algorithmic approach emerging from the study of a variety of actual G-->P maps. These include RNA folding, protein function and the study of evolvable software. Some generalities are emerging from these disparate fields of analysis, and I suggest that the concept of 'developmental encoding' (as opposed to the classical one of genetic encoding) provides a promising computational-theoretical underpinning to coherently integrate ideas on evolvability, modularity and robustness and foster a fruitful framing of the G-->P mapping problem.
Collapse
Affiliation(s)
- Massimo Pigliucci
- Department of Philosophy, City University of New York-Lehman, NY, USA.
| |
Collapse
|
12
|
Hozumi A, Kawai N, Yoshida R, Ogura Y, Ohta N, Satake H, Satoh N, Sasakura Y. Efficient transposition of a single Minos transposon copy in the genome of the ascidian Ciona intestinalis with a transgenic line expressing transposase in eggs. Dev Dyn 2010; 239:1076-88. [DOI: 10.1002/dvdy.22254] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
|
14
|
Chiba S, Jiang D, Satoh N, Smith WC. Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 2009; 136:35-9. [PMID: 19019990 PMCID: PMC2685961 DOI: 10.1242/dev.030981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2008] [Indexed: 11/20/2022]
Abstract
We report the isolation of a recessive ENU-induced short-tailed mutant in the ascidian Ciona intestinalis that is the product of a premature stop in the brachyury gene. Notochord differentiation and morphogenesis are severely disrupted in the mutant line. At the larval stage, variable degrees of ectopic endoderm staining were observed in the homozygous mutants, indicating that loss of brachyury results in stochastic fate transformation. In post-metamorphosis mutants, a uniform defect in tail resorption was observed, together with variable defects in digestive tract development. Some cells misdirected from the notochord lineage were found to be incorporated into definitive endodermal structures, such as stomach and intestine.
Collapse
Affiliation(s)
- Shota Chiba
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|