1
|
Wood JL, Nepal S, Jones BW. Autoregulation of the glial gene reversed polarity in Drosophila. Sci Rep 2025; 15:1238. [PMID: 39774987 PMCID: PMC11706977 DOI: 10.1038/s41598-025-85247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
During development, cells of the nervous system begin as unspecified precursors and proceed along one of two developmental paths to become either neurons or glia. Work in the fruit fly Drosophila melanogaster has established the role of the transcription factor Glial cells missing (Gcm) in directing neuronal precursor cells to assume a glial cell fate. Gcm acts on many target genes, one of which is reversed polarity (repo). repo encodes a homeodomain transcription factor and is necessary for the terminal differentiation of glial cells. Transient Gcm expression is followed by maintained expression of repo. Evidence supports autoregulation to be one of the mechanisms that maintains repo expression, as ectopic repo expression in embryos can activate repo-lacZ reporter constructs. In this paper we further explore the ability of repo to activate reporter constructs in transgenic embryos and in cultured S2 cells. We provide further evidence that Repo protein acts as a transcription factor on its own regulatory DNA sequence. We report that three canonical Repo binding sites (RBSs) are located within the upstream 4.3 kilobase repo cis-regulatory DNA (CRD). The upstream 2 kb within the repo CRD has remarkable repo-dependent gene expression activity, and mutagenesis of RBS1 in this 2 kb region results in a significant decrease in repo-induced reporter gene expression in both systems. Our results in cell culture experiments also show that RBS2 and/or RBS3 can affect repo-dependent gene expression in the context of the whole upstream repo CRD. Mutagenesis of both RBS2 and RBS3 in the repo CRD, leaving RBS1 intact, significantly reduces repo-induced reporter gene expression. These results suggest that all three canonical RBSs may be cooperatively involved in autoregulation of repo expression.
Collapse
Affiliation(s)
- Jamie L Wood
- Department of Biology, The University of Mississippi, University, MS, 38677, USA
- Department of Medical Education, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Saroj Nepal
- Department of Biology, The University of Mississippi, University, MS, 38677, USA
| | - Bradley W Jones
- Department of Biology, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
2
|
In Vitro and In Vivo Antitumor Activity of Vitamin D3 in Malignant Gliomas: A Systematic Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.94542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Matsuno M, Horiuchi J, Ofusa K, Masuda T, Saitoe M. Inhibiting Glutamate Activity during Consolidation Suppresses Age-Related Long-Term Memory Impairment in Drosophila. iScience 2019; 15:55-65. [PMID: 31030182 PMCID: PMC6487374 DOI: 10.1016/j.isci.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 04/08/2019] [Indexed: 01/17/2023] Open
Abstract
In Drosophila, long-term memory (LTM) formation requires increases in glial gene expression. Klingon (Klg), a cell adhesion molecule expressed in both neurons and glia, induces expression of the glial transcription factor, Repo. However, glial signaling downstream of Repo has been unclear. Here we demonstrate that Repo increases expression of the glutamate transporter, EAAT1, and EAAT1 is required during consolidation of LTM. The expressions of Klg, Repo, and EAAT1 decrease upon aging, suggesting that age-related impairments in LTM are caused by dysfunction of the Klg-Repo-EAAT1 pathway. Supporting this idea, overexpression of Repo or EAAT1 rescues age-associated impairments in LTM. Pharmacological inhibition of glutamate activity during consolidation improves LTM in klg mutants and aged flies. Altogether, our results indicate that LTM formation requires glial-dependent inhibition of glutamate signaling during memory consolidation, and aging disrupts this process by inhibiting the Klg-Repo-EAAT1 pathway.
Collapse
Affiliation(s)
- Motomi Matsuno
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Kyoko Ofusa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Tomoko Masuda
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
4
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
5
|
Oberacker T, Bajorat J, Ziola S, Schroeder A, Röth D, Kastl L, Edgar BA, Wagner W, Gülow K, Krammer PH. Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett 2018; 592:2297-2307. [PMID: 29897613 PMCID: PMC6099297 DOI: 10.1002/1873-3468.13156] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
The "free radical theory of aging" suggests that reactive oxygen species (ROS) are responsible for age-related loss of cellular functions and, therefore, represent the main cause of aging. Redox regulation by thioredoxin-1 (TRX) plays a crucial role in responses to oxidative stress. We show that thioredoxin-interacting protein (TXNIP), a negative regulator of TRX, plays a major role in maintaining the redox status and, thereby, influences aging processes. This role of TXNIP is conserved from flies to humans. Age-dependent upregulation of TXNIP results in decreased stress resistance to oxidative challenge in primary human cells and in Drosophila. Experimental overexpression of TXNIP in flies shortens lifespan due to elevated oxidative DNA damage, whereas downregulation of TXNIP enhances oxidative stress resistance and extends lifespan.
Collapse
Affiliation(s)
- Tina Oberacker
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jörg Bajorat
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sabine Ziola
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Anne Schroeder
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniel Röth
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Lena Kastl
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Bruce A. Edgar
- German Cancer Research Center (DKFZ)Center for Molecular BiologyUniversity of Heidelberg AllianceGermany
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Wolfgang Wagner
- Department for Stem Cell Biology and Cellular EngineeringHelmholtz‐Institute for Biomedical EngineeringRWTH Aachen University Medical SchoolGermany
| | - Karsten Gülow
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
- Internal Medicine IUniversity Hospital RegensburgGermany
| | - Peter H. Krammer
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
6
|
Cabarcas SM, Thomas S, Zhang X, Cherry JM, Sebastian T, Yerramilli S, Lader E, Farrar WL, Hurt EM. The role of upregulated miRNAs and the identification of novel mRNA targets in prostatospheres. Genomics 2012; 99:108-17. [PMID: 22206861 PMCID: PMC3430075 DOI: 10.1016/j.ygeno.2011.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 11/30/2022]
Abstract
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.
Collapse
Affiliation(s)
- Stephanie M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Masutani H, Yoshihara E, Masaki S, Chen Z, Yodoi J. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J Clin Biochem Nutr 2011; 50:23-34. [PMID: 22247597 PMCID: PMC3246179 DOI: 10.3164/jcbn.11-36sr] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/05/2011] [Indexed: 01/05/2023] Open
Abstract
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Institute for Virus Research, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
8
|
Levendusky MC, Basle J, Chang S, Mandalaywala NV, Voigt JM, Dearborn RE. Expression and regulation of vitamin D3 upregulated protein 1 (VDUP1) is conserved in mammalian and insect brain. J Comp Neurol 2010; 517:581-600. [PMID: 19824090 DOI: 10.1002/cne.22195] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Originally characterized as a cell-cycle inhibitor induced by vitamin D(3), the tumor suppressor vitamin-D(3) upregulated protein 1 (VDUP1) has increasingly been shown to play major physiological roles in cell differentiation and glucose metabolism. Here we show evolutionarily conserved expression patterns of VDUP1 in Drosophila and rat nervous systems, including subcellular localization--cytoplasmic enrichment in neurons and nuclear expression in glia. These anatomical correlates suggested conservation of VDUP1 regulation, which was investigated both functionally and through promoter studies. Characterization of orthologous vdup1 cis-regulatory regions identified evolutionarily conserved sequence blocks (CSBs) with similarities to neural enhancers, including basic helix-loop-helix (bHLH) transcription factor Neurogenin/Math/atonal and Mash/achaete-scute family members. E-boxes (CANNTG), the binding sites for bHLH proteins, were associated with these CSBs as well, including E-boxes known to mediate glucose-dependent upregulation of VDUP1 in nonneuronal cells. Hyperglycemia-induced upregulation of VDUP1 was observed in brain tumor cells and in the Drosophila nervous system, which resulted in developmental arrest. Taken together, these data demonstrate evolutionary conservation of VDUP1 regulation and function, and suggest an expanding role for VDUP1 in nervous system development.
Collapse
Affiliation(s)
- Mark C Levendusky
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chang S, Mandalaywala NV, Snyder RG, Levendusky MC, Dearborn RE. Hedgehog-dependent down-regulation of the tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), precedes lamina development in Drosophila. Brain Res 2010; 1324:1-13. [PMID: 20138028 DOI: 10.1016/j.brainres.2010.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 12/19/2009] [Accepted: 01/23/2010] [Indexed: 11/30/2022]
Abstract
The tumor suppressor vitamin D(3) up-regulated protein 1 (VDUP1) is expressed throughout the developing and mature Drosophila nervous system, but its regulatory pathways are not well understood. Within the developing Drosophila visual system, down-regulation of VDUP1 in lamina precursor cells (LPCs) coincided with the arrival of retinal axons into the lamina target field, suggesting VDUP1 regulation by an axonally transmitted signal. Hedgehog (Hh) is a signal well known to coordinate LPC proliferation and differentiation in response to retinal axon innervation, and analysis of orthologous dvdup1 promoters identified an evolutionarily conserved binding site for the Hh-dependent transcription factor cubitus interruptus (Ci). Hh-dependent regulation of VDUP1 in the developing lamina was confirmed in Hh loss-of-function backgrounds where VDUP1 expression was maintained in LPCs, inhibiting both cell proliferation and lamina neurogenesis. This putative coupling of VDUP1 to the Hh signaling pathway may provide novel insights into the mechanisms controlling brain growth and development.
Collapse
Affiliation(s)
- Solomon Chang
- Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, 9 Samaritan Road, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|