1
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
2
|
Cerqueira Campos F, Dennis C, Alégot H, Fritsch C, Isabella A, Pouchin P, Bardot O, Horne-Badovinac S, Mirouse V. Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation. Development 2020; 147:dev.186957. [PMID: 32156755 DOI: 10.1242/dev.186957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
Abstract
How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.
Collapse
Affiliation(s)
- Fabiana Cerqueira Campos
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cynthia Dennis
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hervé Alégot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cornelia Fritsch
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Adam Isabella
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Pierre Pouchin
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Takahashi C, Miyatake K, Kusakabe M, Nishida E. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture. J Biol Chem 2018; 293:8342-8361. [PMID: 29674317 PMCID: PMC5986203 DOI: 10.1074/jbc.ra117.000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A.
Collapse
Affiliation(s)
- Chika Takahashi
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Koichi Miyatake
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Morioh Kusakabe
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
4
|
Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:635792. [PMID: 26380289 PMCID: PMC4561298 DOI: 10.1155/2015/635792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/11/2015] [Indexed: 01/24/2023]
Abstract
In skeletal muscle, dystroglycan (DG) is the central component of the dystrophin-glycoprotein complex (DGC), a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1) have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others) model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.
Collapse
|
5
|
The dystroglycan: Nestled in an adhesome during embryonic development. Dev Biol 2015; 401:132-42. [DOI: 10.1016/j.ydbio.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/11/2023]
|
6
|
Peng J, Awad A, Sar S, Komaiha OH, Moyano R, Rayal A, Samuel D, Shewan A, Vanhaesebroeck B, Mostov K, Gassama-Diagne A. Phosphoinositide 3-kinase p110δ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat Commun 2015; 6:5937. [PMID: 25583025 PMCID: PMC5094449 DOI: 10.1038/ncomms6937] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/22/2014] [Indexed: 01/04/2023] Open
Abstract
Signalling triggered by adhesion to the extracellular matrix plays a key role in the spatial orientation of epithelial polarity and formation of lumens in glandular tissues. Phosphoinositide 3-kinase signalling in particular is known to influence the polarization process during epithelial cell morphogenesis. Here, using Madin-Darby canine kidney epithelial cells grown in 3D culture, we show that the p110δ isoform of phosphoinositide 3-kinase co-localizes with focal adhesion proteins at the basal surface of polarized cells. Pharmacological, siRNA- or kinase-dead-mediated inhibition of p110δ impair the early stages of lumen formation, resulting in inverted polarized cysts, with no laminin or type IV collagen assembly at cell/extracellular matrix contacts. p110δ also regulates the organization of focal adhesions and membrane localization of dystroglycan. Thus, we uncover a previously unrecognized role for p110δ in epithelial cells in the orientation of the apico-basal axis and lumen formation.
Collapse
Affiliation(s)
- Juan Peng
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Aline Awad
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Sokhavuth Sar
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Ola Hamze Komaiha
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Romina Moyano
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Amel Rayal
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| | - Didier Samuel
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, F-94800 Villejuif, France
| | - Annette Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street London WC1E 6BT, UK
| | - Keith Mostov
- Departments of Anatomy, and Biochemistry and Biophysics, University of California San Francisco, School of Medicine, 600 16th Street, San Francisco, CA 94143-2140
| | - Ama Gassama-Diagne
- Univ Paris-Sud, UMR-S 785, Villejuif, F-94800, France;-Inserm
- Unité 785, Villejuif, F-94800, France
| |
Collapse
|
7
|
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. Dev Biol 2014; 397:175-90. [PMID: 25446030 DOI: 10.1016/j.ydbio.2014.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2014] [Accepted: 10/26/2014] [Indexed: 11/23/2022]
Abstract
The respective role of Pax2 and Pax8 in early kidney development in vertebrates is poorly understood. In this report, we have studied the roles of Pax8 and Pax2 in Xenopus pronephros development using a loss-of-function approach. Our results highlight a differential requirement of these two transcription factors for proper pronephros formation. Pax8 is necessary for the earliest steps of pronephric development and its depletion leads to a complete absence of pronephric tubule. Pax2 is required after the establishment of the tubule pronephric anlage, for the expression of several terminal differentiation markers of the pronephric tubule. Neither Pax2 nor Pax8 is essential to glomus development. We further show that Pax8 controls hnf1b, but not lhx1 and Osr2, expression in the kidney field as soon as the mid-neurula stage. Pax8 is also required for cell proliferation of pronephric precursors in the kidney field. It may exert its action through the wnt/beta-catenin pathway since activation of this pathway can rescue MoPax8 induced proliferation defect and Pax8 regulates expression of the wnt pathway components, dvl1 and sfrp3. Finally, we observed that loss of pronephros in Pax8 morphants correlates with an expanded vascular/blood gene expression domain indicating that Pax8 function is important to delimit the blood/endothelial genes expression domain in the anterior part of the dorso-lateral plate.
Collapse
|
8
|
Buisson N, Sirour C, Moreau N, Denker E, Le Bouffant R, Goullancourt A, Darribère T, Bello V. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis. Development 2014; 141:4569-79. [PMID: 25359726 DOI: 10.1242/dev.116103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells.
Collapse
Affiliation(s)
- Nicolas Buisson
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Cathy Sirour
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7009, Observatoire Océanographique, Villefranche-sur-mer 06230, France
| | - Nicole Moreau
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Ronan Le Bouffant
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Aline Goullancourt
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Thierry Darribère
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Valérie Bello
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| |
Collapse
|
9
|
Rodriguez-Fraticelli AE, Martin-Belmonte F. Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Curr Opin Cell Biol 2014; 30:83-90. [DOI: 10.1016/j.ceb.2014.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
|
10
|
Ma L, Qu L. The Function of MicroRNAs in Renal Development and Pathophysiology. J Genet Genomics 2013; 40:143-52. [DOI: 10.1016/j.jgg.2013.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
|
11
|
Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol 2011; 23:547-53. [PMID: 21561755 PMCID: PMC3181278 DOI: 10.1016/j.ceb.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
Organ branching morphogenesis is a complex process that requires many coordinated cell functions, including cell migration, proliferation, and polarization. This process is regulated at numerous levels, including spatial and temporal expression of transcription factors and their regulators; growth factors and their receptors; as well as cell-cell and cell-extracellular matrix interactions. Integrins and dystroglycan are transmembrane receptors that control both the adhesion of cells to matrix components as well as transduction of signaling coming from and directed to the matrix. In this article we review current advances defining the roles of these receptors in branching morphogenesis focusing on the major epithelial cell derived structures in mammals, namely salivary gland, mammary gland, lung, pancreas, and kidney.
Collapse
Affiliation(s)
- Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center and Veterans Affairs Hospital, Nashville, TN 37232, USA
| | | |
Collapse
|
12
|
Sirour C, Hidalgo M, Bello V, Buisson N, Darribère T, Moreau N. Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway. Mol Biol Cell 2011; 22:2957-69. [PMID: 21680717 PMCID: PMC3154890 DOI: 10.1091/mbc.e11-01-0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/18/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023] Open
Abstract
Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell-cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of β(1) integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway.
Collapse
Affiliation(s)
- Cathy Sirour
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Magdalena Hidalgo
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
- Laboratoire Réponses Cellulaires et Fonctionnelles à l'Hypoxie, Université Paris13, EA2363, 93017 Bobigny Cedex, France
| | - Valérie Bello
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Nicolas Buisson
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Thierry Darribère
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Nicole Moreau
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| |
Collapse
|
13
|
Jarad G, Pippin JW, Shankland SJ, Kreidberg JA, Miner JH. Dystroglycan does not contribute significantly to kidney development or function, in health or after injury. Am J Physiol Renal Physiol 2011; 300:F811-20. [PMID: 21209007 DOI: 10.1152/ajprenal.00725.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dystroglycan (DG or DAG1) is considered a critical link between the basement membrane and the cytoskeleton in multiple tissues. DG consists of two subunits, an extracellular α-subunit that binds laminin and other basement membrane components, and a transmembrane β-subunit. DG-null mouse embryos die during early embryogenesis because DG is required for Reichert's membrane formation. DG also forms an integral part of the dystrophin-glycoprotein complex in muscle. Although no human DG mutations have been reported, multiple forms of muscular dystrophy have been linked to DG glycosylation defects, and targeted deletion of muscle DG causes muscular dystrophy in mice. Moreover, DG is widely distributed in endothelial and epithelial cells, including those in the kidney. There has therefore been significant interest in DG's role in the kidney, especially in podocytes. Previous reports suggested that DG's disturbance in podocytes might cause glomerular filtration barrier abnormalities. To fully understand DG's contribution to nephrogenesis and kidney function, we used a conditional DG allele and a variety of Cre mice to systematically delete DG from podocytes, ureteric bud, metanephric mesenchyme, and then from the whole kidney. Surprisingly, none of these conditional deletions resulted in significant morphological or functional abnormalities in the kidney. Furthermore, DG-deficient podocytes did not show increased susceptibility to injury, and DG-deficient kidneys did not show delayed recovery. Integrins are therefore likely the primary extracellular matrix receptors in renal epithelia.
Collapse
Affiliation(s)
- George Jarad
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
14
|
Hidalgo M, Sirour C, Bello V, Moreau N, Beaudry M, Darribère T. In vivo analyzes of dystroglycan function during somitogenesis in Xenopus laevis. Dev Dyn 2009; 238:1332-45. [PMID: 19086027 DOI: 10.1002/dvdy.21814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dystroglycan (Dg) is a cell adhesion receptor for laminin that has been reported to play a role in skeletal muscle cell stability, cytoskeletal organization, cell polarity, and signaling. Here we show that Dg is expressed at both the notochord/somite and the intersomitic boundaries, where laminin and fibronectin are accumulated during somitogenesis. Inhibition of Dg function with morpholino antisense oligonucleotides or a dominant negative mutant results in the normal segmentation of the presomitic mesoderm but affects the number, the size, and the integrity of somites. Depletion of Dg disrupts proliferation and alignment of myoblasts without affecting XMyoD and XMRF4 expression. It also leads to defects in laminin deposition at the intersomitic junctions, whereas expression of integrin beta1 subunits and fibronectin assembly occur normally. Our results show that Dg is critical for both proliferation and elongation of somitic cells and that the Dg-cytoplasmic domain is required for the laminin assembly at the intersomitic boundaries. Developmental Dynamics 238:1332-1345, 2009. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Université Pierre et Marie Curie Paris 6 UMR CNRS 7622, Laboratoire de Biologie du Développement, équipe Matrice Extracellulaire et Développement, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Yin GN, Lee HW, Cho JY, Suk K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res 2009; 1265:158-70. [PMID: 19368810 DOI: 10.1016/j.brainres.2009.01.058] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by progressive loss of cognitive function, dementia, and problems with movements. In order to find new protein biomarkers of high specificity from cerebrospinal fluid (CSF) of AD and PD patients, one-dimensional gel electrophoresis (1-DE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) as well as 2-DE analysis were performed. In 1-DE and LC-MS/MS 371 proteins were identified, among which levels of proteins such as isoform 1 of contactin-1, contactin-2, carnosine dipeptidase 1 (CNDP1), 120 kDa isoform precursor of neural cell adhesion molecule 1 (NCAM-120), alpha-dystroglycan, secreted protein acidic and rich in cysteine-like protein 1 precursor (SPARCL1), isoform 2 of calsyntenin 1 (CLSTN1), and neuronal pentraxin receptor (NPR) showed significant changes in AD or PD CSF compared with normal subjects. In 2-DE analysis approximately 747-915 spots were detected in CSF of AD or PD patients, from which 17-24 proteins with more than a 1.2 fold change were identified by tandem MS. Most proteins identified showed consistent changes in LC-MS/MS and 2-DE analysis. Three proteins that showed significant changes were selected for further validation by Western blot analysis. While NCAM-120 and alpha-dystroglycan exhibited higher levels in both AD and PD CSF compared with normal subjects, the level of NPR was increased only in AD CSF in Western blot analysis. The results were consistent with quantitative analysis of 2-DE spots. A higher level of NPR was also found in AD serum. This study suggests that NCAM-120, alpha-dystroglycan, and NPR are candidate biomarkers in CSF for neurodegenerative diseases, and that the changes in the CSF level of NPR may be specific for AD.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Joong-Gu, Daegu, South Korea
| | | | | | | |
Collapse
|
16
|
Moore CJ, Goh HT, Hewitt JE. Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 2008; 92:159-67. [PMID: 18632251 DOI: 10.1016/j.ygeno.2008.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 10/21/2022]
Abstract
Mutations in human genes encoding proteins involved in alpha-dystroglycan glycosylation result in dystroglycanopathies: severe congenital muscular dystrophy phenotypes often accompanied by CNS abnormalities and ocular defects. We have identified the zebrafish orthologues of the seven known genes in this pathway and examined their expression during embryonic development. Zebrafish Large, POMT1, POMT2, POMGnT1, Fukutin, and FKRP show in situ hybridization patterns similar to those of dystroglycan, with broad expression throughout early development. By 30 h postfertilization (hpf), transcripts of all these genes are most prominent in the CNS, eye, and muscle, tissues that are predominantly affected in the dystroglycanopathies. In contrast, Large2 expression is more restricted and by 30 hpf is confined to the lens, cerebellum, and pronephric duct. We show that the monoclonal antibody IIH6, which recognizes a glycoform of dystroglycan, also detects the zebrafish protein. Injection of morpholino oligonucleotides against zebrafish Large2 resulted in loss of IIH6 immunostaining. These data indicate that the dystroglycan glycosylation pathway is conserved in zebrafish and suggest this organism is likely to be a useful model system for functional studies.
Collapse
Affiliation(s)
- Christopher J Moore
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|